

Report No. CCTI-2021102606R Date: Nov. 01, 2021 Page 1 of 10

Applicant: Dongguan Cycle Tree Industrial Co., Ltd.

Address : Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

The submitted sample and sample information was/were submitted and identified by/on the behalf

of the client

Sample name : Egg beater

Testing type /model : SSS-EB001

SSS-EB002,SSS-EB003,SSS-EB004,SSS-EB005,SSS-EB006,SSS-EB007,

Additional type /model : SSS-EB008,SSS-EB009,SSS-EB010,SSS-EB011,SSS-EB012,SSS-EB013,

SSS-EB014

Trademark : N/A

Manufacturer name : Dongguan Cycle Tree Industrial Co., Ltd.

Address : Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Sample received date : Oct. 21, 2021

Testing period : Oct. 21, 2021 to Nov. 01, 2021

Test requested : As specified by client, to test the Lead(Pb), Cadmium(Cd), Mercury(Hg),

Hexavalent Chromium(Cr(VI)), Polybrominated Biphenyl(PBBs),

Polybrominated Diphenyl Ethers (PBDEs), Diisobutyl phthalate (DIBP), Dibutyl phthalate(DBP), Benzyl butyl phthalate(BBP), Di-2-ethylhexyl phthalate(DEHP) in the submitted sample in accordance with the RoHS Directive 2011/65/EU and amendment Commission Delegated Directive

(EU) 2015/863 with effective from 22 July 2019.

Test Method : Please refer to the following page(s)

Test Result(s) : Please refer to the following page(s)

Conclusion : The test results comply with the limits of RoHS 2.0 Directive (EU) 2015/863

and (EU)2017/2102 amending Annex II to Directive 2011/65/EU.

******FOR FURTHER DETAILS, PLEASE REFER TO THE FOLLOWING PAGE(S)******

Tested by

Reviewed by

Approved I

Rober Ruan

Sendy Wang

Test engineer

Test engineer

Laboratory director

Tel: 400-188-9662

Email: ccti@ccti-lab.com

Http://www.ccti-lab.com

Report No. CCTI-2021102606R Date: Nov. 01, 2021 Page 2 of 10

Test Method:

A. Screening test by XRF spectroscopy

XRF screening limits in mg/kg for regulated elements according to IEC 62321-3-1:2013.

	Limit of IEC 62321-3	Limit of IEC 62321-3-1:2013. Unit (mg/kg)			
Element	Polymers and Metals	Composite Material	Polymers	Other material	
Pb	BL≤(700-3σ) <x <(1300+3σ)<br="">≤OL</x>	BL≤(500-3σ) <x <(1500+3σ)<br="">≤OL</x>	10 mg/kg	50 mg/kg	
Cd	BL≤(70-3σ) <x <(130+3σ)<br="">≤OL</x>	LOD≤(50-3σ) <x <(150+3σ)<br="">≤OL</x>	10 mg/kg	50 mg/kg	
Hg	BL≤(700-3σ) <x <(1300+3σ)<br="">≤OL</x>	BL≤(500-3σ) <x <(1500+3σ)<br="">≤OL</x>	10 mg/kg	50 mg/kg	
Cr	BL≤(700-3σ)< X	BL≤(500-3σ)< X	10 mg/kg	50 mg/kg	
Br	BL≤(300-3σ)< X	BL≤(250-3σ)< X	10 mg/kg	50 mg/kg	

Note:

- -BL = Under the XRF screening limit
- -OL = Further chemical test will be conducted while result is above the screening limit
- -X= The symbol "X" marks the region where further investigation is necessary
- -3σ= The reproducibility of analytical instruments
- -LOD= Detection limit

B. Chemical Test

Test Item	Test Method	Test Equipment	MDL	Limit
Lead (Pb)	IEC 62321-5:2013	ICP-OES	2 mg/kg	1000 mg/kg
Cadmium (Cd)	IEC 62321-5:2013	ICP-OES	2 mg/kg	100 mg/kg
Mercury (Hg)	IEC 62321-4:2013+AMD1:2017	ICP-OES	2 mg/kg	1000 mg/kg
Hexavalent Chromium Cr (VI) (Metal)	IEC 62321-7-1:2015	UV-VIS	0.1 μg/cm ²	0.13 μg/cm ²
Hexavalent Chromium Cr (VI) (Nonmetal)	IEC 62321-7-2:2017	UV-VIS	8 mg/kg	1000 mg/kg
Polybrominated Biphenyls (PBBs)	IEC 62321-6:2015	GC-MS	5 mg/kg	1000 mg/kg
Polybrominated Diphenyl Ethers (PBDEs)	IEC 62321-6:2015	GC-MS	5 mg/kg	1000 mg/kg
Phthalates (DBP, BBP, DEHP, DIBP)	IEC 62321-8:2017	GC-MS	50mg/kg	1000 mg/kg

Report No. CCTI-2021102606R Date: Nov. 01, 2021 Page 3 of 10

Test Result(s):

Sample	Sample	Tooks dilkows	XRF Screening	Chemical Test	Onnolveion
No.	Description	Tested Items	Test Unit (mg/kg)	Unit (mg/kg)	Conclusion
		Pb	BL	/	
		Cd	BL	/	
1	Black plastic shell	Hg	BL	1	PASS
		Cr(Cr(VI))	BL	1	
		Br(PBBs&PBDEs)	BL	1	
		Pb	BL	1	
		Cd	BL	1	
2	Silver plastic buttons	Hg	BL		PASS
	Duttoris	Cr(Cr(VI))	BL	1	
		Br(PBBs&PBDEs)	BL	1	
		Pb	BL	/ /	
		Cd	BL	/1	
3	Tin	Hg	BL	1	PASS
		Cr(Cr(VI))	BL	21	
		Br(PBBs&PBDEs)	1	1	
		Pb	BL	1	
		Cd	BL	1	
4	Silver metal shrapnel	Hg	BL	/	PASS
	Siliapilei	Cr(Cr(VI))	BL	4 7	
		Br(PBBs&PBDEs)		-	
		Pb	BL		
		Cd	BL	1	
5	Silver metal spring	Hg	BL	NIC	PASS
		Cr(Cr(VI))	BL	1	
		Br(PBBs&PBDEs)	1	1	
		Pb	BL	1	
		Cd	BL	1	
6 Motor	Motor	Hg	BL	/	PASS
		Cr(Cr(VI))	BL	/	
		Br(PBBs&PBDEs)	1	/	
		Pb	BL	/	
		Cd	BL	/	
7	Silver metal stirrer	Hg	BL	/	PASS
		Cr(Cr(VI))	BL	/	
		Br(PBBs&PBDEs)	1	/	

Date: Nov. 01, 2021 Page 4 of 10 Report No. CCTI-2021102606R

Sample No.	Sample Description	Tested Items	XRF Screening Test Unit (mg/kg)	Chemical Test Unit (mg/kg)	Conclusion
		Pb	BL	/	
		Cd	BL	/	
8	Metal screw	Hg	BL	/	PASS
	Cr(Cr(VI))	BL	/		
		Br(PBBs&PBDEs)	1	1	

Tested Item(s)	Result Unit (mg/kg)				Acceptable Limit
rested item(s)	1	2	3	4	Unit (mg/kg)
Di-isobutyl phthalate(DIBP) CAS #:84-69-5	N.D.	N.D.	1	1	1000
Dibutyl phthalate(DBP) CAS #:84-74-2	N.D.	N.D.	1	1	1000
Benzylbutyl phthalate(BBP) CAS #:85-68-7	N.D.	N.D.	1	1	1000
Di-2-ethylhexyl phthalate(DEHP) CAS #:117-81-7	N.D.	N.D.		1	1000

		4			
Tooted Item(a)	Result Unit (mg/kg)				Acceptable
Tested Item(s)	5	6	7	8	Limit Unit (mg/kg)
Di-isobutyl phthalate(DIBP) CAS #:84-69-5	1	95			1000
Dibutyl phthalate(DBP) CAS #:84-74-2	1	1	1	1	1000
Benzylbutyl phthalate(BBP) CAS #:85-68-7	/	1	1	1	1000
Di-2-ethylhexyl phthalate(DEHP) CAS #:117-81-7	/	1	/	1	1000

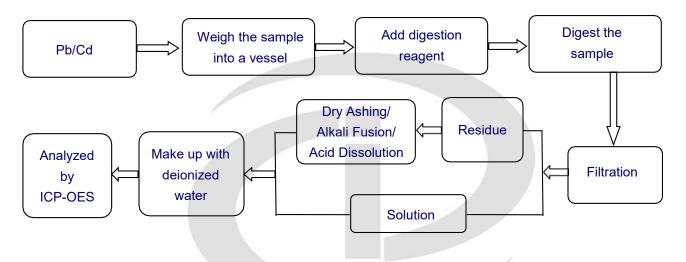
Report No. CCTI-2021102606R Date: Nov. 01, 2021 Page 5 of 10

Note:

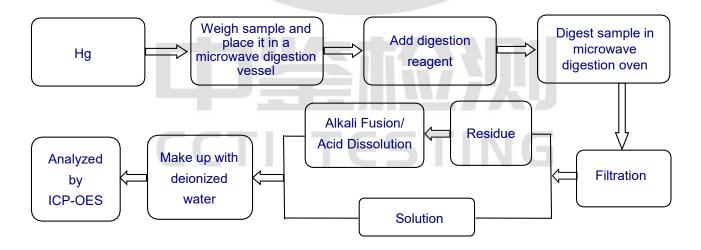
- -MDL = Method Detection Limit
- -N.D. = Not Detected (<MDL)
- -mg/kg = ppm = parts per million
- -Negative = Absence of Cr(VI), the detected Cr(VI) concentration in the boiling water extraction solution is less than 0.02 mg/kg with 50cm^2 sample surface area used.
- -Positive = Presence of Cr(VI), the detected Cr(VI) concentration in the boiling water extraction solution is equal to or greater than 0.02 mg/kg with 50cm² sample surface area used.
- -#=According to the directive (2011/65/ EU), Lead is exempted as copper alloy containing up to 4% lead by weight.

Remark:

- The screening results are only used for reference.
- When conducting the test for PBBs & PBDEs, XRF was introduced to screen Br Exclusively;
- When conducting the test for Hexavalent Chromium, XRF was introduced to screen Chromium exclusively.

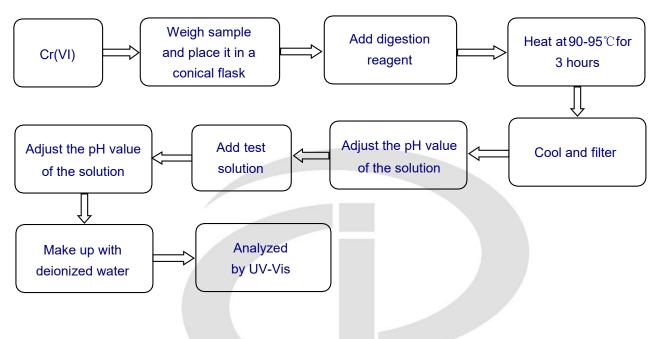


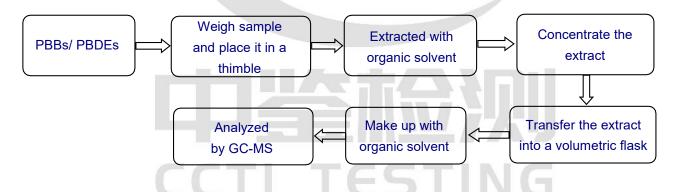
Report No. CCTI-2021102606R Date: Nov. 01, 2021 Page 6 of 10


Test Process:

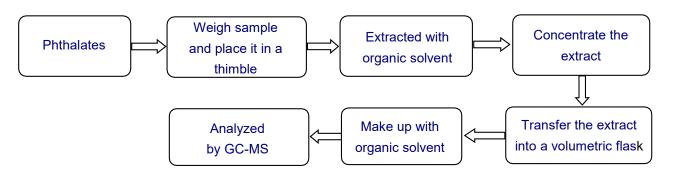
The sample(s) had been dissolved totally tested for Lead, Cadmium, Mercury.

◆ IEC 62321-5:2013 Ed.1.0


◆ IEC 62321-4:2013+AMD1:2017 Ed.1.0



Report No. CCTI-2021102606R Date: Nov. 01, 2021 Page 7 of 10


◆ IEC 62321-7-2:2017 Ed.1.0

◆ IEC 62321-6:2015 Ed.1.0

◆ IEC 62321-8:2017 Ed.1.0

Report No. CCTI-2021102606R Date: Nov. 01, 2021

Page 8 of 10

Photograph of Sample

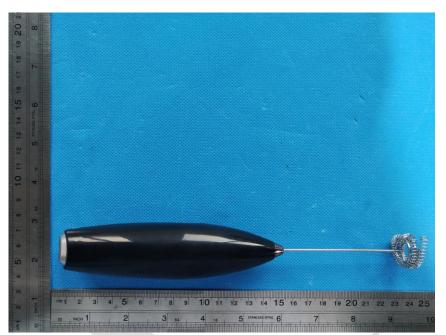


Figure 1

Figure 2

Shenzhen CCTI Technology Co., Ltd.

Tel: 400-188-9662

Email: ccti@ccti-lab.com

Http://www.ccti-lab.com

Report No. CCTI-2021102606R Date: Nov. 01, 2021 Page 9 of 10

Figure 3

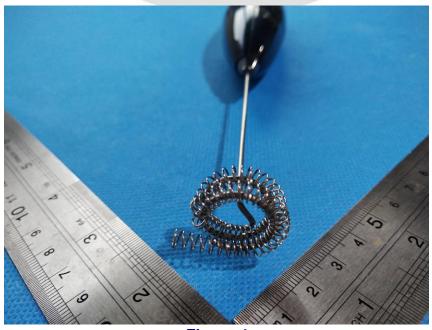


Figure 4

Shenzhen CCTI Technology Co., Ltd.

Tel: 400-188-9662 Email: ccti@ccti-lab.com

Http://www.ccti-lab.com

Report No. CCTI-2021102606R Date: Nov. 01, 2021 Page 10 of 10



Figure 5

Figure 6

***** End of Report *****

The test report is effective only with both signature and specialized stamp. The result(s) shown in this report refer only to the sample(s) tested. Without written approval of CCTI, this report can't be reproduced except in full.

Tel: 400-188-9662 Email: ccti@ccti-lab.com Http://www.ccti-lab.com

Certificate of Compliance

Certificate Number: CCTI-2021102606C

Applicant : Dongguan Cycle Tree Industrial Co., Ltd.

Address : Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Manufacturer : Dongguan Cycle Tree Industrial Co., Ltd.

Address : Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Product : Egg beater

Trademark : N/A

Model No. : SSS-EB001

SSS-EB002,SSS-EB003,SSS-EB004,SSS-EB005,SSS-EB006,SSS-EB007, SSS-EB008,SSS-EB009,SSS-EB010,SSS-EB011,SSS-EB012,SSS-EB013,

SSS-EB014

Test Standard : IEC 62321-3-1:2013, IEC 62321-4:2013+AMD1:2017, IEC 62321-5:2013,

IEC 62321-6:2015, IEC 62321-7-1:2015, IEC 62321-7-2:2017,

IEC 62321-8:2017

The EUT described above has been tested by us and found in compliance with the council RoHS 2.0 Directive (EU) 2015/863 and (EU) 2017/2102 amending Annex II to Directive 2011/65/EU.

The certificate applies to the tested sample above mentioned only, It is only valid in connection with the test report number: CCTI-2021102606R.

RoHS

Shenzhen CCTI Technology Co., Ltd.

Add: 7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118, Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 400-188-9662 0755-27225865 Email: ccti@ccti-lab.com Web: www.ccti-lab.com

This Certificate of Conformity is based on single evaluation of the submitted sample(s) of the above mentioned product. It does not imply an assessment of the whole product and relevant. Directives to be observed.

FCC TEST REPORT

Report reference No...... CCTI-2021102607E

Date of issue Nov. 01, 2021

Total number of pages...... 15

Testing Laboratory name.....: Shenzhen CCTI Technology Co., Ltd.

Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen,

Guangdong, China.

Address...... Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Test specification

Standard..... FCC Part 15 Subpart B

ANSI C63.4:2014

Test procedure N/A

Test Result Pass

Test Report Form No.....: --

TRF Originator: CCTI testing

Master TRF Dated 2018-03

This device described above has been tested by CCTI, and the test results show that the equipment under test (EUT) is in compliance with Part 15 of FCC Rules. The results shown in this test report refer only to the sample(s) tested unless other wise stated and the sample(s) are retained for 30 days only.

The document is issued by CCTI, may be altered or revised by CCTI, personal only, and shall be noted in the revision of the document. this document cannont be reproduced except in full with our prior written permission.

Test item description Egg beater

Trademark...... N/A

Manufacturer's name Dongguan Cycle Tree Industrial Co., Ltd.

Address...... Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Model and/or type reference...... SSS-EB001

SSS-EB002,SSS-EB003,SSS-EB004,SSS-EB005,SSS-EB006,

SSS-EB007,SSS-EB008,SSS-EB009,SSS-EB010,SSS-EB011,

SSS-EB012,SSS-EB013,SSS-EB014

Rating(s) DC 3V From battery

Report No.: CCTI-2021102607E

Testing procedure and testing location:		
Testing Laboratory:	Shenzhen CCTI Technology Co., Ltd.	
Address:	7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118, Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China	
Date of Test::	Oct. 21, 2021 to Nov. 01, 2021	
Tested by (name + signature):	Nick Chan Wrde Cham	
Reviewed by (name + signature):	Sendy Wang Sendy Wang	
Approved by (name + signature):	Corey Mao Corey Mao	

Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 2 of 15

CCTI TESTING

TABLE OF CONTENT

T	est R	eport Declaration	Page
1.	GEN	NERAL INFORMATION	
	1.1.	Description of Device (EUT)	4
	1.2.	Test Facility	
	1.3.	Tested System Details	4
	1.4.	Test Uncertainty	4
2.	TES	T INSTRUMENT USED	5
3.	CON	NDUCTED EMISSION AT THE MAINS TERMINALS TEST	6
	3.1.	Block Diagram Of Test Setup	6
	3.2.	Test Standard	6
	3.3.	Power Line Conducted Emission Limit	6
	3.4.	EUT Configuration on Test	
	3.5.	Operating Condition of EUT	
	3.6.	Test Procedure	7
	3.7.	Test Result	7
4.	RAD	DIATION EMISSION TEST	8
	4.1.	Block Diagram of Test Setup	8
	4.2.	Test Standard	
	4.3.	Radiation Limit	8
	4.4.	EUT Configuration on Test	8
	4.5.	Operating Condition of EUT	8
	4.6.	Test Procedure	
	4.7.	Test Result	g
5 .	EUT	PHOTOGRAPHS	12
6.	EUT	TEST PHOTOGRAPHS	15
•			

CCTI TESTING

Tel: 0086-400-188-9662

1. GENERAL INFORMATION

1.1 Description of Device

EUT : Egg beater

Trademark : N/A

Model Number : SSS-EB001

Serial Model : SSS-EB002,SSS-EB003,SSS-EB004,SSS-EB005,SSS-EB00

6,SSS-EB007,SSS-EB008,SSS-EB009,SSS-EB010,SSS-EB

011,SSS-EB012,SSS-EB013,SSS-EB014

Model Difference : The product is different for model number and power.

Power Supply : DC 3V From battery

Note: SSS-EB001 was selected as the test model and the datas have been recorded in this report.

1.2 Test Facility

Shenzhen CCTI Technology Co., Ltd.

7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118, Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

1.3 Tested System Details

None

1.4 Test Uncertainty

Conducted Emission : ±2.66dB

Uncertainty

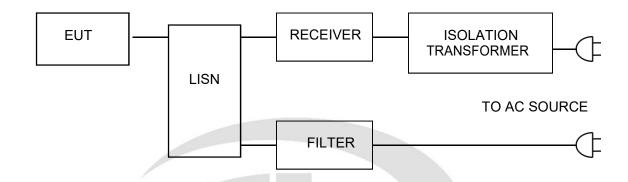
Radiated Emission Uncertainty: ±4.26dB

Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 4 of 15

2. TEST INSTRUMENT USED

For Conducted Emission at the mains terminals Test

	Conducted Emission Test (A site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
843 Shielded Room	ChengYu	843 Room	843	Apr. 12, 2021	Apr. 11, 2022	
EMI Receiver	R&S	ESCI	101421	Apr. 12, 2021	Apr. 11, 2022	
LISN	Schwarzbeck	NSLK8127	8127739	Apr. 12, 2021	Apr. 11, 2022	
Attenuator	R&S	ESH3-Z2	CCTI021E	Apr. 12, 2021	Apr. 11, 2022	
843 Cable 1#	FUJIKURA	843C1#	001	Apr. 12, 2021	Apr. 11, 2022	


For Radiated Emission Test

	Radiation Emission Test (966 chamber)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.	
966 chamber	ChengYu	966 Room	966	Apr. 12, 2021	Apr. 11, 2022	
Spectrum Analyzer	Agilent	E4407B	MY45109572	Apr. 12, 2021	Apr. 11, 2022	
Amplifier	Schwarzbeck	BBV9743	9743-119	Apr. 12, 2021	Apr. 11, 2022	
Amplifier	Schwarzbeck	BBV9718	9718-270	Apr. 12, 2021	Apr. 11, 2022	
Log-periodic Antenna	Schwarzbeck	VULB9160	VULB9160-3 369	Apr. 12, 2021	Apr. 11, 2022	
EMI Receiver	R&S	ESCI	101421	Apr. 12, 2021	Apr. 11, 2022	
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1275	Apr. 12, 2021	Apr. 11, 2022	
966 Cable 1#	CHENGYU	966	004	Apr. 12, 2021	Apr. 11, 2022	
966 Cable 2#	CHENGYU	966	003	Apr. 12, 2021	Apr. 11, 2022	

3. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1. Block Diagram Of Test Setup

3.2. Test Standard FCC PART 15 B

3.3. Power Line Conducted Emission Limit

Frequency	Limits dB(μV)		
MHz	Quasi-peak Level	Average Level	
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*	
0.50 ~ 5.00	56	46	
5.00 ~ 30.00	60	50	

Notes: 1. Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4. EUT Configuration on Test

The following equipments are installed on conducted emission test to meet FCC PART 15 B requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.5. Operating Condition of EUT

- 3.5.1 Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Let the EUT work in test modes and test it.

Report No.: CCTI-2021102607E

3.6. Test Procedure

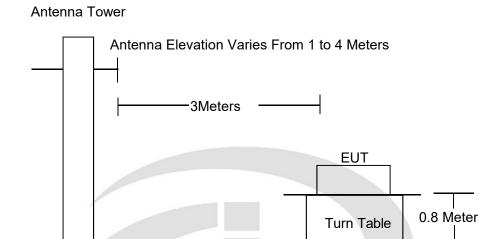
The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **FCC PART 15 B** regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 10KHz.

The frequency range from 150 KHz to 30 MHz is investigated.

3.7. Test Result

The product's power provide by battery, no requirement for this item.



Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 7 of 15

4. RADIATION EMISSION TEST

4.1. Block Diagram of Test Setup

Ground Plane

4.2. Test Standard FCC PART 15 B

4.3. Radiation Limit

FREQUENCY	DISTANCE	FIELD STRENGTHS LIMITS
(MHz)	(Meters)	(dBμV/m)
30 ~ 88	3	40.0
88 ~ 216	3	43.5
216 ~ 960	3	46.0
960 ~ 1000	3	54.0

4.4. EUT Configuration on Test

The FCC PART 15 B regulations test method must be used to find the maximum emission during radiated emission test.

ESTI

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.2.

4.5. Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 8 of 15

Report No.: CCTI-2021102607E

4.6. Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to FCC PART 15 B on radiated emission test.

The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120KHz below 1GHz, set at 1MHz above 1GHz

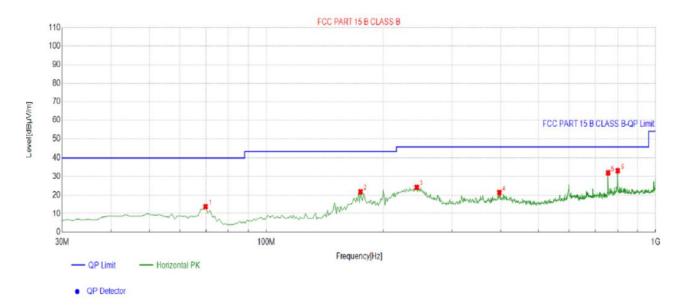
The frequency range from 30MHz to 1000MHz is checked.

The highest frequency of the internal sources of the EUT was 1.3GHz, so the measurement was only made up to 6GHz.

4.7. Test Result

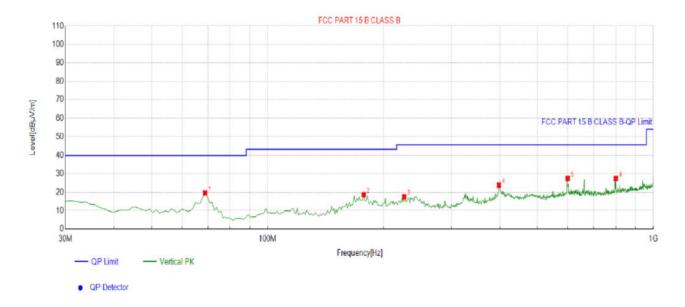
PASS

Please refer to the following page.



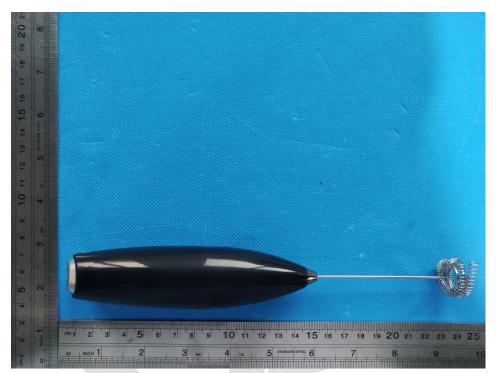
Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 9 of 15

Radiation Emission Test Data							
EUT: Egg beater Model Name : SSS-EB001							
Temperature:	24 ℃	Relative Humidity:	54%				
Pressure:	1010 hPa	Polarization :	Horizontal				
Test Voltage:	DC 3V From battery	Test Mode:	Working				



Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	69.8098	-17.62	31.43	13.81	40.00	26.19	100	216	Horizontal
2	174.6747	-17.09	38.86	21.77	43.50	21.73	100	76	Horizontal
3	243.6136	-13.69	37.80	24.11	46.00	21.89	100	285	Horizontal
4	397.0270	-10.48	31.87	21.39	46.00	24.61	100	86	Horizontal
5	755.3153	-3.60	35.70	32.10	46.00	13.90	100	216	Horizontal
6	799.9800	-3.12	36.34	33.22	46.00	12.78	100	0	Horizontal

Radiation Emission Test Data							
EUT: Egg beater Model Name : SSS-EB001							
Temperature:	24 ℃	Relative Humidity:	54%				
Pressure:	1009hPa	Polarization :	Vertical				
Test Voltage:	DC 3V From battery	Test Mode:	Working				

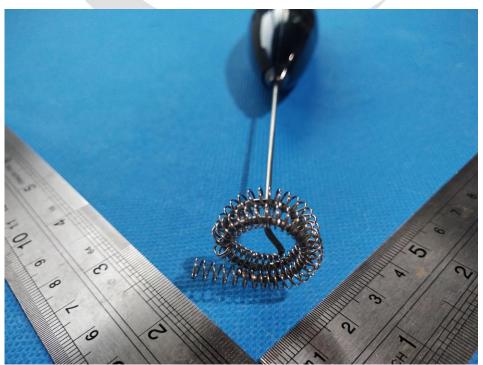


Suspe	Suspected List									
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity	
1	68.8388	-17.38	37.02	19.64	40.00	20.36	100	237	Vertical	
2	177.5876	-16.96	35.65	18.69	43.50	24.81	100	148	Vertical	
3	226.1361	-14.41	32.00	17.59	46.00	28.41	100	264	Vertical	
4	397.9980	-10.45	34.33	23.88	46.00	22.12	100	337	Vertical	
5	599.9600	-6.11	33.62	27.51	46.00	18.49	100	344	Vertical	
6	799.9800	-3.12	30.60	27.48	46.00	18.52	100	254	Vertical	

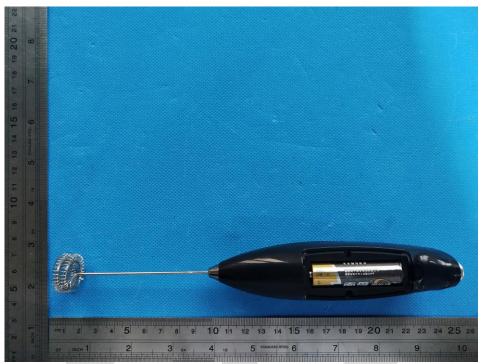
Tel: 0086-400-188-9662

5. EUT PHOTOGRAPHS

EUT Photo 1


EUT Photo 2

Tel: 0086-400-188-9662



EUT Photo 3

EUT Photo 4

EUT Photo 5

EUT Photo 6

6. EUT TEST PHOTOGRAPHS

Report No.: CCTI-2021102607E

EUT Photo RE

**** END OF REPORT ****

中置加测 CCTI TESTING

Supplier's Declaration of Conformity

Certificate Number: CCTI-2021102607C

This device complies with part 15 of the FCC Rules. Operation is subject to the condition that this device does not cause harmful interference

Applicant : Dongguan Cycle Tree Industrial Co., Ltd.

Address : Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Manufacturer : Dongguan Cycle Tree Industrial Co., Ltd.

Address : Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Product : Egg beater

Trademark : N/A

Model No. : SSS-EB001

SSS-EB002,SSS-EB003,SSS-EB004,SSS-EB005,SSS-EB006,SSS-EB007, SSS-EB008,SSS-EB009,SSS-EB010,SSS-EB011,SSS-EB012,SSS-EB013,

SSS-EB014

Test Standard : FCC Part 15 Subpart B

Was tested to conform to the applicable FCC Rules and regulations. The method of testing was in accordance to the most accurate measurement standards possible, and that all necessary steps have been enforced to assure that all production units of the same equipment will continue to comply with the Federal Communications Commission's requirements.

Identification of regulation: 47 CFR Part 15 Subpart B Class B, measurement Procedure: ANSI C63.4:2014.It is only Valid in connection with the test report number: CCTI-2021102607E.

Shenzhen CCTI Technology Co., Ltd.

Add: 7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118, Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 400-188-9662

0755-27225865

Email: ccti@ccti-lab.com

Web: www.ccti-lab.com

This Certificate of Conformity is based on single evaluation of the submitted sample(s) of the above mentioned product. It does not imply an assessment of the whole product and relevant. Directives to be observed.

EMC TEST REPORT

Report reference No...... CCTI-2021102605E

Date of issue Nov. 01, 2021

Total number of pages.....: 34

Testing Laboratory name...... Shenzhen CCTI Technology Co., Ltd.

Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen,

Guangdong, China.

Applicant's name Dongguan Cycle Tree Industrial Co., Ltd.

Address...... Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Test specification

Standard..... EN 55014-1:2017+A11:2020,

EN IEC 61000-3-2:2019, EN 61000-3-3:2013+A1:2019,

EN 55014-2:2015,

EN 61000-4-2:2009, EN 61000-4-3:2006+A1:2008+A2:2010,

EN 61000-4-4:2012, EN 61000-4-5:2014+A1:2017,

EN 61000-4-6:2014/AC:2015, EN 61000-4-11:2004+A1:2017

Test procedure CE-EMC

Test Result Pass

Test Report Form No.....: --

TRF Originator: CCTI testing

Master TRF Dated 2018-03

This device described above has been tested by CCTI, and the test results show that the equipment under test (EUT) is in compliance with the EMC Directive 2014/30/EU requirements. The results shown in this test report refer only to the sample(s) tested unless other wise stated and the sample(s) are retained for 30 days only.

The document is issued by CCTI, may be altered or revised by CCTI, personal only, and shall be noted in the revision of the document this document cannont be reproduced except in full with our prior written permission.

Test item description Egg beater

Trademark..... N/A

Manufacturer's name Dongguan Cycle Tree Industrial Co., Ltd.

Address...... Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Model and/or type reference...... SSS-EB001

SSS-EB002,SSS-EB003,SSS-EB004,SSS-EB005,SSS-EB006, SSS-EB007,SSS-EB008,SSS-EB009,SSS-EB010,SSS-EB011,

SSS-EB012,SSS-EB013,SSS-EB014

Rating(s) DC 3V From battery

Report No.: CCTI-2021102605E

Testing procedure and testing location:			
Testing Laboratory:	Shenzhen CCTI Technology Co., Ltd.		
Address:	7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118, Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China		
Date of Test::	Oct. 21, 2021 to Nov. 01, 2021		
Tested by (name + signature):	Nick Chan Wrde Cham		
Reviewed by (name + signature):	Sendy Wang Sendy Wang		
Approved by (name + signature):	Corey Mao Corey Mao		
— 44			

CCTI TESTING

Web: Http//www.ccti-lab.com

E-mail:ccti@ccti-lab.com

Tel: 0086-400-188-9662

Page 2 of 34

TABLE OF CONTENT

Т	est F	Report Declaration	Page
1.	GE	NERAL INFORMATION	
	1.1.	Description of Device (EUT)	5
	1.2.	Test Facility	5
	1.3.	Tested System Details	
	1.4.	Test Uncertainty	
2.	TES	ST INSTRUMENT USED	6
3.	CO	NDUCTED EMISSION AT THE MAINS TERMINALS TEST	Γ9
	3.1.	Block Diagram Of Test Setup	9
	3.2.	Test Standard	9
	3.3.	Power Line Conducted Emission Limit	
	3.4.	EUT Configuration on Test	
	3.5.	Operating Condition of EUT	9
	3.6. 3.7.	Test Procedure Test Result	10
1		DIATION EMISSION TEST	
4.	4.1.		
	4.1. 4.2.	Block Diagram Of Test Setup Test Standard	
	4.2.	Radiation Limit	
	4.4.	EUT Configuration on Test	
	4.5.	Operating Condition of EUT	
	4.6.	Test Procedure	12
	4.7.	Test Result	12
5.	HA	RMONIC CURRENT EMISSION TEST	
	5.1.	Block Diagram of Test Setup	
	5.2.	Test Standard	
	5.3.	Operating Condition of EUT	
	5.4. 5.5.	Test Procedure	
_		Test Results LTAGE FLUCTUATIONS & FLICKER TEST	
ь.		Block Diagram of Test Setup	
	6.1. 6.2.	Test Standard	
	6.3.	Operating Condition of EUT	
	6.4.	Test Procedure	
	6.5.	Test Results	
7.	ELE	ECTROSTATIC DISCHARGE IMMUNITY TEST	18
	7.1.	Block Diagram of Test Setup	
	7.2.	Test Standard	
	7.3.	Severity Levels and Performance Criterion	
	7.4.	EUT Configuration	
	7.5.	Operating Condition of EUT	
	7.6.	Test Procedure	
	7.7.	Test Results	
8.		FIELD STRENGTH SUSCEPTIBILITY TEST	
	8.1.	Block Diagram of Test Setup	
	8.2.	Test Standard	
	8.3. 8.4.	Severity Levels and Performance Criterion EUT Configuration on Test	
	8.5.	Operating Condition of EUT	
	8.6.	Test Procedure	
	8.7.	Test Results	

Report No.: CCTI-2021102605E

9. ELEC	CTRICAL FAST TRANSIENT/BURST IMMUNITY TEST	2 3
9.1.	Block Diagram of EUT Test Setup	23
9.2.	Test Standard	
9.3.	Severity Levels and Performance Criterion	21
9.4.	EUT Configuration on Test	
9.5.	Operating Condition of EUT	22
9.6.	Test Procedure	
9.7.	Test Results	22
10. SUF	RGE TEST	25
10.1.	Block Diagram of EUT Test Setup	25
10.2.	Test Standard	
10.3.	Severity Levels and Performance Criterion	
10.4.	EUT Configuration on Test	
10.5.	Operating Condition of EUT	
10.6.	Test Procedure	
10.7.	Test Result	
11. INJI	ECTED CURRENTS SUSCEPTIBILITY TEST	
11.1.	Block Diagram of EUT Test Setup	
11.2.	Test Standard	
11.3.	Severity Levels and Performance Criterion	
11.4.	EUT Configuration on Test	
11.5.	Operating Condition of EUT	
11.6.	Test Procedure	
11.7.	Test Result	
	TAGE DIPS AND INTERRUPTIONS TEST	
12.1.	Block Diagram of EUT Test Setup	
12.2.	Test Standard	
12.3.	Severity Levels and Performance Criterion	
12.4.	EUT Configuration on Test	
12.5.	Operating Condition of EUT	
12.6.	Test Procedure	
12.7.	Test Result	
	PHOTOGRAPHS	
14. EUT	TEST PHOTOGRAPHS	34

CCTI TESTING

1. GENERAL INFORMATION

1.1 Description of Device (EUT)

EUT : Egg beater

Trademark : N/A

Model Number : SSS-EB001

Serial Model : SSS-EB002,SSS-EB003,SSS-EB004,SSS-EB005,SSS-EB00

6,SSS-EB007,SSS-EB008,SSS-EB009,SSS-EB010,SSS-EB

011,SSS-EB012,SSS-EB013,SSS-EB014

Model Difference : The product is different for model number and power.

Power Supply : DC 3V From battery

Note: SSS-EB001 was selected as the test model and the datas have been recorded in this report.

1.2 Test Facility

Shenzhen CCTI Technology Co., Ltd.

7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118, Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China.

1.3 Tested System Details

None.

1.4 Test Uncertainty

Conducted Emission : ±2.66dB

Uncertainty

Radiated Emission Uncertainty: ±4.26dB

2. TEST INSTRUMENT USED

For Conducted Emission at the mains terminals Test

Conducted Emission Test (A site)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
843 Shielded Room	ChengYu	843 Room	843	Mar. 12, 2021	Mar. 11, 2022			
EMI Receiver	R&S	ESCI	101421	Mar. 12, 2021	Mar. 11, 2022			
LISN	Schwarzbeck	NSLK8127	8127739	Mar. 12, 2021	Mar. 11, 2022			
Attenuator	R&S	ESH3-Z2	CCTI021E	Mar. 12, 2021	Mar. 11, 2022			
843 Cable 1#	FUJIKURA	843C1#	001	Mar. 12, 2021	Mar. 11, 2022			

For Conducted Emission at the telecom port Test

Conducted Emission Test (A site)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
843 Shielded Room	ChengYu	843 Room	843	Mar. 12, 2021	Mar. 11, 2022			
EMI Receiver	R&S	ESCI	101421	Mar. 12, 2021	Mar. 11, 2022			
Coupling/ Decoupling Network	PH	ISN T800	S1509001	Mar. 12, 2021	Mar. 11, 2022			
Attenuator	R&S	ESH3-Z2	CCTI021E	Mar. 12, 2021	Mar. 11, 2022			
843 Cable 1#	FUJIKURA	843C1#	001	Mar. 12, 2021	Mar. 11, 2022			

For Radiated Emission Test

Radiation Emission Test (966 chamber)							
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.		
966 chamber	ChengYu	966 Room	966	Mar. 12, 2021	Mar. 11, 2022		
Spectrum Analyzer	Agilent	E4407B	MY45109572	Mar. 12, 2021	Mar. 11, 2022		
Amplifier	Schwarzbeck	BBV9743	9743-119	Mar. 12, 2021	Mar. 11, 2022		
Amplifier	Schwarzbeck	BBV9718	9718-270	Mar. 12, 2021	Mar. 11, 2022		
Log-periodic Antenna	Schwarzbeck	VULB9160	VULB9160-3 369	Mar. 12, 2021	Mar. 11, 2022		
EMI Receiver	R&S	ESCI	101421	Mar. 12, 2021	Mar. 11, 2022		
Horn Antenna	Schwarzbeck	BBHA9120D	9120D-1275	Mar. 12, 2021	Mar. 11, 2022		
966 Cable 1#	CHENGYU	966	004	Mar. 12, 2021	Mar. 11, 2022		
966 Cable 2#	CHENGYU	966	003	Mar. 12, 2021	Mar. 11, 2022		

Report No.: CCTI-2021102605E

For Harmonic & Flicker Test

For Harmonic / Flicker Test (A site)								
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.			
Harmonic / Flicker Analyzer	KIKUSUI	KHA1000	VA002445	Mar. 12, 2021	Mar. 11, 2022			
AC Power Supply	KIKUSUI	PCR4000M	UK001879	Mar. 12, 2021	Mar. 11, 2022			
Line Impedance network	KIKUSUI	LIN1020JF	UL001611	Mar. 12, 2021	Mar. 11, 2022			

For Electrostatic Discharge Immunity Test

For Electrostatic Discharge Immunity Test (A site)						
Equipment Manufacturer Model# Serial#				Last Cal.	Next Cal.	
ESD Tester	KIKISUI	KES4201A	UH002321	Mar. 12, 2021	Mar. 11, 2022	

For RF Field Strength Susceptibility Test(SMQ)

For RF Field Strength Susceptibility Test (SMQ site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Signal Generator	HP	8648A	3625U00573	Mar. 12, 2021	Mar. 11, 2022
Amplifier	A&R	500A100	17034	Mar. 12, 2021	Mar. 11, 2022
Amplifier	A&R	100W/1000M1	17028	Mar. 12, 2021	Mar. 11, 2022
Audio Analyzer (20Hz~1GHz)	Panasonic	2023B	202301/428	Mar. 12, 2021	Mar. 11, 2022
Isotropic Field Probe	A&R	FP2000	16755	Mar. 12, 2021	Mar. 11, 2022
Antenna	EMCO	3108	9507-2534	Mar. 12, 2021	Mar. 11, 2022
Log-periodic Antenna	A&R	AT1080	16812	Mar. 12, 2021	Mar. 11, 2022

For Electrical Fast Transient /Burst Immunity Test

For Electrical Fast Transient/Burst Immunity Test (A site)					
Equipment Manufacturer Model# Serial# Last Cal. Next Cal.					Next Cal.
Burst Tester	Prima	EFT61004AG	PR14054467	Mar. 12, 2021	Mar. 11, 2022
Coupling Clamp	Prima	EFT61004AG	CCTI009E	Mar. 12, 2021	Mar. 11, 2022

Report No.: CCTI-2021102605E

For Surge Test

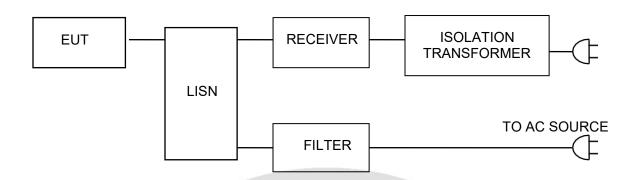
For Surge Test (A site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Surge Tester	Prima	SUG61005BX	PR12045446	Mar. 12, 2021	Mar. 11, 2022

For Injected Currents Susceptibility Test

For Injected Currents Susceptibility Test (A site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
C/S Test System	SCHLODER	CDG600	126B1281	Mar. 12, 2021	Mar. 11, 2022
CDN	SCHLODER	CDN-M2+3	A2210320/201 5	Mar. 12, 2021	Mar. 11, 2022
Injection Clamp	SCHLOBER	EMCL-20	132A1214/201 5	Mar. 12, 2021	Mar. 11, 2022

For Voltage Dips Interruptions Test

For Voltage Dips Interruptions Test (A site)					
Equipment	Manufacturer	Model#	Serial#	Last Cal.	Next Cal.
Dips Tester	Prima	DRP61011AG	PR14086284	Mar. 12, 2021	Mar. 11, 2022



Tel: 0086-400-188-9662

3. CONDUCTED EMISSION AT THE MAINS TERMINALS TEST

3.1 Block Diagram Of Test Setup

3.2 Test Standard

EN 55014-1:2017+A11:2020

3.3 Power Line Conducted Emission Limit

Frequency MHz	Limits dB(μV)		
requeries wiriz	Quasi-peak Level	Average Level	
0.15 ~ 0.50	66 ~ 56*	56 ~ 46*	
0.50 ~ 5.00	56	46	
5.00 ~ 30.00	60	50	

Notes: 1. *Decreasing linearly with logarithm of frequency.

2. The lower limit shall apply at the transition frequencies.

3.4 EUT Configuration on Test

The following equipments are installed on conducted emission test to meet EN 55014-1 requirement and operating in a manner which tends to maximize its emission characteristics in a normal application.

3.5 Operating Condition of EUT

- 3.5.1 Setup the EUT and simulators as shown in Section 3.1.
- 3.5.2 Turn on the power of all equipments.
- 3.5.3 Let the EUT work in test modes and test it.

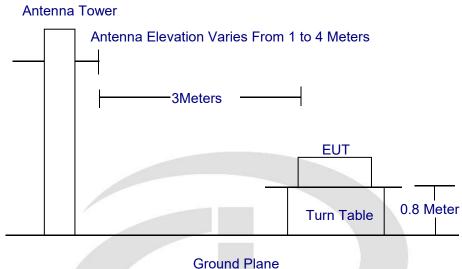
3.6 Test Procedure

The EUT is put on the ground and connected to the AC mains through a Artificial Mains Network (AMN). This provided a 50ohm coupling impedance for the tested equipments. Both sides of AC line are checked to find out the maximum conducted emission levels according to the **EN 55014-1** regulations during conducted emission test.

The bandwidth of the test receiver (R&S Test Receiver ESCI) is set at 10KHz.

The frequency range from 150 KHz to 30 MHz is investigated.

3.7 Test Result


The product's power provide by battery, no requirement for this item.

4. RADIATION EMISSION TEST

4.1 Block Diagram of Test Setup

Ground Plane

4.2 Test Standard

EN 55014-1:2017+A11:2020

4.3 Radiation Limit

Frequency MHz	Distance (Meters)	Field Strengths Limits dB(μV)/m	Detector
30 ~ 230	3	40.0	QP
230 ~ 1000	3	47.0	QP

Remark:

- (1) Emission level $(dB(\mu V)/m) = 20 \log Emission level (\mu V/m)$
- (2) The smaller limit shall apply at the cross point between two frequency bands.
- (3) Distance refers to the distance in meters between the measuring instrument, antenna and the closed point of any part of the device or system.

4.4 EUT Configuration on Test

The EN 55014-1 regulations test method must be used to find the maximum emission during radiated emission test.

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.2.

4.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.2 except the test set up replaced as Section 4.1.

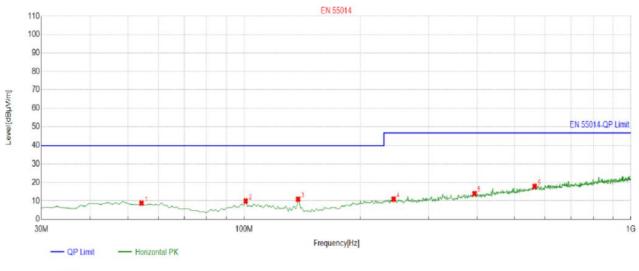
4.6 Test Procedure

The EUT and its simulators are placed on a turned table that is 0.8 meter above the ground. The turned table can rotate 360 degrees to determine the position of the maximum emission level. The EUT is set 3 meters away from the receiving antenna that is mounted on the antenna tower. The antenna can move up and down between 1 meter and 4 meters to find out the maximum emission level. Broadband antenna (calibrated biconical and log periodical antenna) is used as receiving antenna. Both horizontal and vertical polarization of the antenna is set on test. In order to find the maximum emission levels, the interface cable must be manipulated according to EN 55014-1 on radiated emission test.

The bandwidth setting on the field strength meter (R&S Test Receiver ESCI) is set at 120KHz below 1GHz, set at 1MHz above 1GHz

The frequency range from 30MHz to 1000MHz is checked.

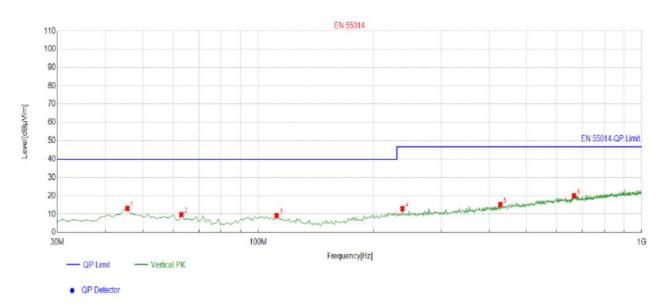
4.7 Test Result


PASS

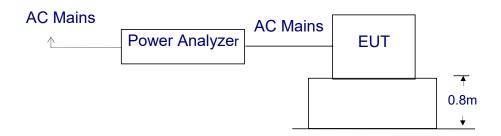
Please refer to the following page.

Radiation Emission Test Data				
Temperature: 24.5 ℃ Relative Humidity: 54%				
Pressure:	1009hPa	Phase :	Horizontal	
Test Voltage :	DC 3V From battery	Test Mode:	Working	

QP Detector


Suspe	cted List								
NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	54.2743	-14.30	23.09	8.79	40.00	31.21	100	259	Horizontal
2	100.8809	-15.40	25.33	9.93	40.00	30.07	100	259	Horizontal
3	137.7778	-19.04	29.99	10.95	40.00	29.05	100	355	Horizontal
4	243.6136	-13.69	24.69	11.00	47.00	36.00	100	36	Horizontal
5	394.1141	-10.55	24.54	13.99	47.00	33.01	100	138	Horizontal
6	564.0340	-6.57	24.54	17.97	47.00	29.03	100	212	Horizontal

Radiation Emission Test Data					
Temperature: 24.5 ℃ Relative Humidity: 54%					
Pressure:	1009hPa	Phase :	Vertical		
Test Voltage :	DC 3V From battery	Test Mode:	Working		


NO.	Freq. [MHz]	Factor [dB]	Reading [dBµV/m]	Level [dBµV/m]	Limit [dBµV/m]	Margin [dB]	Height [cm]	Angle [°]	Polarity
1	45.5355	-13.65	26.81	13.16	40.00	26.84	100	359	Vertical
2	63.0130	-15.92	25.62	9.70	40.00	30.30	100	111	Vertical
3	111.5616	-15.69	24.80	9.11	40.00	30.89	100	1	Vertical
4	237.7878	-13.96	26.98	13.02	47.00	33.98	100	175	Vertical
5	428.0981	-9.89	25.19	15.30	47.00	31.70	100	41	Vertical
6	666.9570	-4.75	24.90	20.15	47.00	26.85	100	1	Vertical

CCTI TESTING

5. HARMONIC CURRENT EMISSION TEST

5.1 Block Diagram of Test Setup

5.2 Test Standard

EN IEC 61000-3-2:2019

5.3 Operating Condition of EUT

- 5.3.1 Setup the EUT as shown in Section 5.1.
- 5.3.2 Turn on the power of all equipments.
- 5.3.3 Let the EUT work in test mode and test it.

5.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

5.5 Test Results

The product's power provide by battery, no requirement for this item.

Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 15 of 34

6.1

6. FLUCTUATIONS & FLICKER TEST

Block Diagram of Test Setup

Same as Section 5.1..

6.2 Test Standard

EN 61000-3-3:2013+A1:2019

6.3 Operating Condition of EUT

Same as Section 5.3.. The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

Report No.: CCTI-2021102605E

Flicker Test Limit

Test items	Limits		
Pst	1.0		
dc	3.3%		
Tmax	4.0%		
dt	Not exceed 3.3% for 500ms		

6.4 Test Procedure

The power cord of the EUT is connected to the output of the test system. Turn on the power of the EUT and use the test system to test the harmonic current level.

6.5 Test Results

The product's power provide by battery, no requirement for this item.

Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 16 of 34

7. ELECTROSTATIC DISCHARGE IMMUNITY TEST

7.1 Block Diagram of Test Setup

7.2 Test Standard

EN 55014-2:2015, EN 61000-4-2:2009

Severity Level: 3 / Air Discharge: ±8KV

Level: 2 / Contact Discharge: ±4KV

7.3 Severity Levels and Performance Criterion

7.3.1 Severity level

Level	Test Voltage Contact Discharge (KV)	Test Voltage Air Discharge (KV)
1.	±2	±2
2.	±4	±4
3.	±6	±8
4.	±8	±15
X	Special	Special

7.3.2 Performance criterion: B

A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the equipment is used as intended.

B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

Temporary loss of function is allowed, provided the function is self-recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

7.4 EUT Configuration

The following equipments are installed on Electrostatic Discharge Immunity test to meet EN 55014-2:2015, EN 61000-4-2:2009, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 2.4.

7.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 3.5 except the test setup replaced by Section 7.1.2.

7.6 Test Procedure

7.6.1 Air Discharge:

This test is done on a non-conductive surface. The round discharge tip of the discharge electrode shall be approached as fast as possible to touch the EUT. After each discharge, the discharge electrode shall be removed from the EUT. The generator is then re-triggered for a new single discharge and repeated 10 times for each pre-selected test point. This procedure shall be repeated until all the air discharge completed.

7.6.2 Contact Discharge:

All the procedure shall be same as Section 7.6.1. Except that the tip of the discharge electrode shall touch the EUT before the discharge switch is operated.

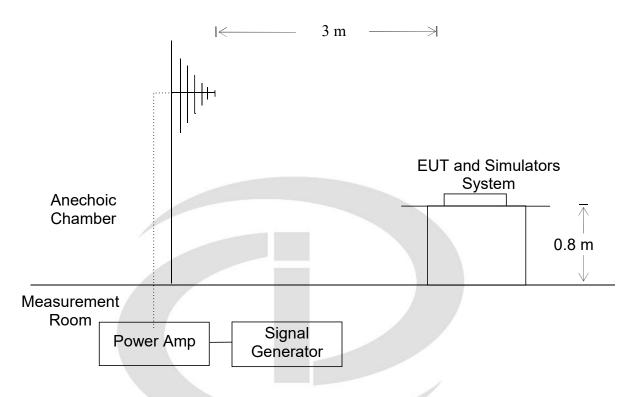
7.6.3 Indirect discharge for horizontal coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied at the front edge of each HCP opposite the center point of each unit (if applicable) of the EUT and 0.1m from the front of the EUT. The long axis of the discharge electrode shall be in the plane of the HCP and perpendicular to its front edge during the discharge.

Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com

7.6.4 Indirect discharge for vertical coupling plane

At least 10 single discharges (in the most sensitive polarity) shall be applied to the center of one vertical edge of the coupling plane. The coupling plane, of dimensions 0.5m X 0.5m, is placed parallel to, and positioned at a distance of 0.1m from the EUT. Discharges shall be applied to the coupling plane, with this plane in sufficient different positions that the four faces of the EUT are complete illuminated.


7.7 Test Results PASS

	ESD Test Data					
Temperature:	1	24.5℃	Humidity:	Humidity:		
Power Supply :	DC (BV From battery	Test Mode:	Test Mode:		
Air Discharge: ± 8KV Contact Discharge: ± 4KV						
Test Points		Air Discharge	Contact Discharge	Performance Criterion	Result	
Enclosure		±2,4,8KV	N/A	В	PASS	
Slit		±2,4,8KV	N/A B		PASS	
Metal Part		N/A	±2,4 KV	В	PASS	
VCP		N/A	±2,4 KV	В	PASS	
HCP		N/A	N/A ±2,4 KV		PASS	
Note: N/A			5511	NG		

8. RF FIELD STRENGTH SUSCEPTIBILITY TEST

8.1 Block Diagram of Test Setup

8.2 Test Standard

EN 55014-2:2015

EN 61000-4-3:2006+A1:2008+A2:2010

Severity Level 2, 3V / m

8.3 Severity Levels and Performance Criterion

8.3.1 Severity level

Level	Field Strength V/m	
1.	1	
2.	3	
3.	10	
X.	Special	

8.3.2 Performance criterion: A

A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended.

- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- C. Temporary loss of function is allowed, provided the function is self- recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

8.4 EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55014-2:2015, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

8.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.5 except the test setup replaced by Section 8.1.

8.6 Test Procedure

The EUT and its simulators are placed on a turn table which is 0.8 meter above ground. EUT is set 3 meter away from the transmitting antenna which is mounted on an antenna tower. Both horizontal and vertical polarization of the antenna are set on test. Each of the four sides of EUT must be faced this transmitting antenna and measured individually.

All the scanning conditions are as follows:

Condition of Test	Remarks
1. Fielded Strength	3 V/m (Severity Level 2)
Radiated Signal	Modulated
Scanning Frequency	80 – 1000 MHz
Dwell time of radiated	0.0015 decade/s
Waiting Time	1 Sec.

8.7 Test Results

PASS

Please refer to the following page.

R/S Test Data					
Temperature : 25℃			Humidity: 53%		
Field Strength: 3 V/m			ion: A		
Power Supply: DC 3V	From battery	Frequ	iency Range	e: 80 MH	Hz to 1000 MHz
Modulation:	☑ AM □ Pu	lse	□none	1 KHz	80%
Test Mode : On					
	Frequency Rang	e : 80-	1000MHz		
Steps	1 %				
	Horizontal		Vertical		Result
Front	A		Α		Pass
Right	Α		Α		Pass
Rear	Α		Α		Pass
Left	A		Α		Pass
Note: N/A					

9. ELECTRICAL FAST TRANSIENT/BURST IMMUNITY TEST

9.1 Block Diagram of EUT Test Setup

9.2 Test Standard

EN 55014-2:2015, EN 61000-4-4:2012

9.3 Severity Levels and Performance Criterion

Severity Level 2 at 1KV, Pulse Rise time & Duration: 5 nS / 50 nS Severity Level:

	Open Circuit Output Test Voltage $\pm 10\%$					
Level	On power ports	On I/O(Input/Output)				
Level	On power ports	Signal data and control ports				
1.	0.5KV	0.25KV				
2.	1KV	0.5KV				
3.	2KV	1KV				
4.	4KV	2KV				
X.	Special	Special				

Performance criterion: B

- A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- C. Temporary loss of function is allowed, provided the function is self- recoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 23 of 34

9.4 EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55014-2:2015, EN 61000-4-4:2012, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application. The configuration of EUT is the same as used in conducted emission test.

Please refer to Section 3.4.

9.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.6 except the test setup replaced by Section 9.1.

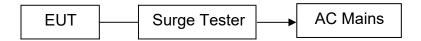
9.6 Test Procedure

EUT shall be placed 0.8m high above the ground reference plane which is a min.1m*1m metallic sheet with 0.65mm minimum thickness. This reference ground plane shall project beyond the EUT by at least 0.1m on all sides and the minimum distance between EUT and all other conductive structure, except the ground plane beneath the EUT, shall be more than 0.5m

9.6.1 For input and output AC power ports:

The EUT is connected to the power mains by using a coupling device which couples the EFT interference signal to AC power lines. Both polarities of the test voltage should be applied during compliance test and the duration of the test is 2 minutes.

9.7 Test Results


The product's power provide by battery, no requirement for this item.

CCTI TESTING

10. SURGE TEST

10.1 Block Diagram of EUT Test Setup

10.2 Test Standard

EN 55014-2:2015, EN 61000-4-5:2014+A1:2017

10.3 Severity Levels and Performance Criterion

Severity Level: Line to Line, Level 2 at 1KV; Severity Level: Line to Earth, Level 3 at 2KV.

Severity Level	Open-Circuit Test Voltage (KV)		
1.	0.5		
2.	1.0		
3.	2.0		
4.	4.0		
X.	Special		

Performance criterion: B

- The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended.
- The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

Web: Http://www.ccti-lab.com

Report No.: CCTI-2021102605E

10.4 EUT Configuration on Test

The following equipments are installed on Electrical Fast Transient/Burst Immunity test to meet EN 55014-2:2015, EN 61000-4-5:2014+A1:2017, requirement and operating in a manner which tends to maximize its emission characteristics in a normal application

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 3.4.

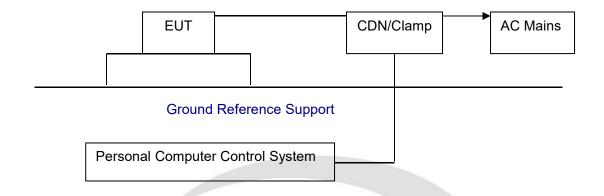
10.5 Operating Condition of EUT

Same as conducted emission measurement, which is listed in Section 2.7 except the test setup replaced by Section 10.1.

10.6 Test Procedure

- (1) Set up the EUT and test generator as shown on section 10.1
- (2) For line to line coupling mode, provide a 1KV 1.2/50us voltage surge (at open-circuit condition) and 8/20us current surge to EUT selected points.
- (3) At least 5 positive and 5 negative (polarity) tests with a maximum 1/min repetition rate are conducted during test.
- (4) Different phase angles are done individually.
- (5) Repeat procedure 2) to 4) except the open-circuit test voltage change from 1KV to 2KV for line to earth coupling mode test.
- (6) Record the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

10.7 Test Result


The product's power provide by battery, no requirement for this item.

Web: Http://www.ccti-lab.com E-mail:ccti@ccti-lab.com Tel: 0086-400-188-9662 Page 26 of 34

11. INJECTED CURRENTS SUSCEPTIBILITY TEST

11.1 Block Diagram of EUT Test Setup

11.2 Test Standard

EN 55014-2:2015, EN 61000-4-6:2014/AC:2015

11.3 Severity Levels and Performance Criterion

Severity Level 2: 3V(rms), 150KHz \sim 80MHz Severity Level:

Level	Field Strength V	
1.	1	
2.	3	
3.	10	
X.	Special	

Performance criterion: A

- A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.

C. Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

11.4 EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.8.

11.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.8 except the test set up replaced as Section 11.1.

11.6 Test Procedure

- (1) Set up the EUT, CDN and test generator as shown on section 11.1
- (2) Let EUT work in test mode and measure.
- (3) The EUT and supporting equipments are placed on an insulating support 0.1m high above a ground reference plane. CDN (coupling and decoupling device) is placed on the ground plane at above 0.1-0.3m from EUT. Cables between CDN and EUT are as short as possible, and their height above the ground reference plane shall be between 30 and 50 mm (where possible).
- (4) The disturbance signal described below is injected to EUT through CDN.
- (5) The EUT operates within its operational mode(s) under intended climatic conditions after power on.
- (6) The frequency range is swept from 150KHz to 80MHz using 3V signal level, and with the disturbance signal 80% amplitude modulated with a 1KHz sine wave.
- (7) The rate of sweep shall not exceed 1.5×10^{-3} decades/s. Where the frequency is swept incrementally, the step size shall not exceed 1% of the start and thereafter 1% of the preceding frequency value.
- (8) Recording the EUT operating situation during compliance test and decide the EUT immunity criterion for above each test.

11.7 Test Result

The product's power provide by battery, no requirement for this item.

12. VOLTAGE DIPS AND INTERRUPTIONS TEST

12.1 Block Diagram of EUT Test Setup

12.2 Test Standard

EN 55014-2:2015, EN 61000-4-11:2004+A1:2017

12.3 Severity Levels and Performance Criterion

Severity Level:

Input and Output AC Power Ports.

- ☑ Voltage Dips.
- ☑ Voltage Interruptions.

Environmental Phenomena	Test Specification	Units	Performance Criterion
Voltage Dips	70 25	% Reduction period	С
	40 10	% Reduction period	С
Voltage Interruptions	0 0.5	% Reduction period	С

Performance criterion: B, C, C

- A. The apparatus shall continue to operate as intended during the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended.
- B. The apparatus shall continue to operate as intended after the test. No degradation of performance or loss of function is allowed below a performance level (or permissible loss of performance) specified by the manufacturer, when the apparatus is used as intended. During the test, degradation of performance is allowed, however, no change of actual operating state or stored data is allowed. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be derived from the product description and documentation, and from what the user may reasonably expect from the apparatus if used as intended.
- C. Temporary loss of function is allowed, provided the function is selfrecoverable or can be restored by the operation of the controls, or by any operation specified in the instructions for use.

12.4 EUT Configuration on Test

The configuration of EUT is the same as used in conducted emission test. Please refer to Section 2.10.

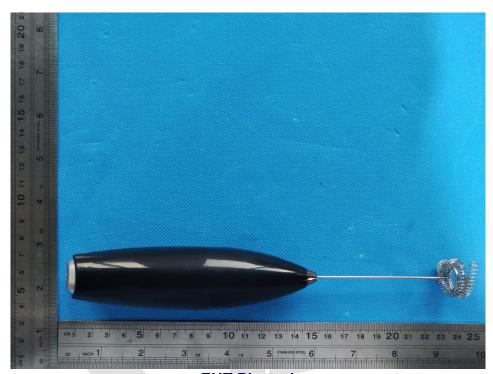
12.5 Operating Condition of EUT

Same as conducted emission test, which is listed in Section 2.10 except the test set up replaced as Section 13.1.

12.6 Test Procedure

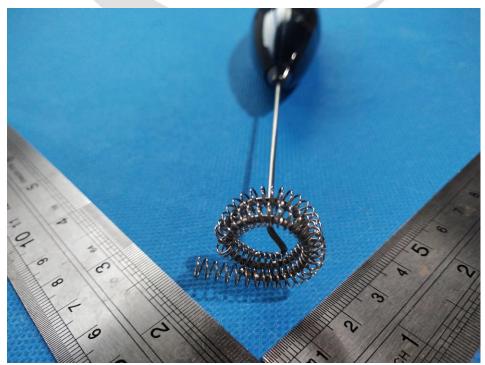
- (1) Set up the EUT and test generator as shown on section 13.1
- (2) The interruption is introduced at selected phase angles with specified duration. There is a 3mins minimum interval between each test event.
- (3) After each test a full functional check is performed before the next test.
- (4) Repeat procedures 2 & 3 for voltage dips, only the level and duration is changed.
- (5) Record any degradation of performance.

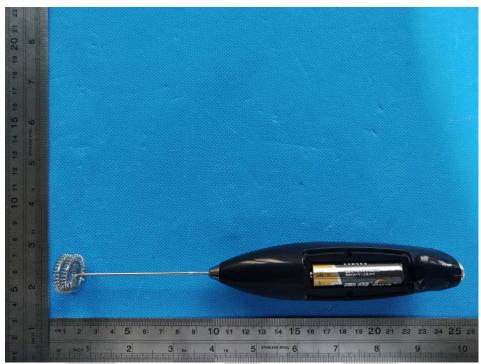
12.7 Test Result


The product's power provide by battery, no requirement for this item.

13. EUT PHOTOGRAPHS

EUT Photo 1

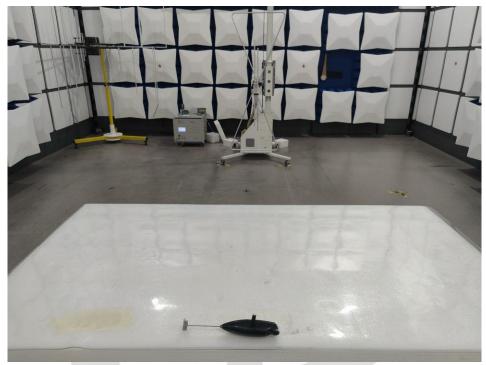

EUT Photo 2



EUT Photo 3

EUT Photo 4

EUT Photo 5



EUT Photo 6

14. EUT TEST PHOTOGRAPHS

Report No.: CCTI-2021102605E

EUT Photo RE

*** END OF REPORT ***

Certificate of Compliance

Certificate Number: CCTI-2021102605C

Applicant : Dongguan Cycle Tree Industrial Co., Ltd.

Address : Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Manufacturer : Dongguan Cycle Tree Industrial Co., Ltd.

Address : Building 1, No. 53, Xitou Yanhe Road, Houjie Town, Dongguan City,

Guangdong Province

Product : Egg beater

Trademark : N/A

Model No. : SSS-EB001

SSS-EB002,SSS-EB00<mark>3,SSS-E</mark>B004,SSS-EB005,SSS-<mark>EB006,SSS</mark>-EB007,

SSS-EB008,SSS-EB009,SSS-EB010,SSS-EB011,SSS-EB012,SSS-EB013,

SSS-EB014

Test Standard : EN 55014-1:2017+A11:2020

EN IEC 61000-3-2:2019 EN 61000-3-3:2013+A1:2019

EN 55014-2:2015

This Attestation of Compliance is issued on a voluntary basis for electrical equipment below the voltage limits of EMC Directive 2014/30/EU. The essential requirement are fulfilled accordingly based on the technical specifications applicable at the time of issuance. See also notes overleaf. It is only valid in connection with the test report Number: CCTI-2021102605E.

Shenzhen CCTI Technology Co., Ltd.

Add: 7th Floor, Block A, Building E, Yongwei Industrial Park, No. 118, Yongfu Road, Qiaotou, Fuhai Street, Bao'an District, Shenzhen, Guangdong, China

Tel: 400-188-9662

0755-27225865

Email: ccti@ccti-lab.com

Web: www.ccti-lab.com

This Certificate of Conformity is based on single evaluation of the submitted sample(s) of the above mentioned product. It does not imply an assessment of the whole product and relevant. Directives to be observed.