

Certificate of Conformity

Certificate Number: DL-20240320069C

Applicant: JM Zengge Lighting Co., Ltd

5th Floor, Building 1, No. 19 Gaoxin East Road, jianghai District, jiangmen

City

Manufacturer: JM Zengge Lighting Co., Ltd

5th Floor, Building 1, No. 19 Gaoxin East Road, jianghai District, jiangmen

City

Product: Smart led bulb

Model No.: ZJ-WBL4H-RGBWW-SM

ZJ-WBL4L-RGBWW-SM, ZJ-BWBL1H-RGBWW-B22-1P, ZJ-WBL3L-RGBWW-SM,

ZJ-WBL3H-RGBWW-SM, ZJ-BWBOL-RGBWW, ZJ-BWBOH-RGBWW, ZJ-WBOL-RGBWW-SM,

ZJ-BWBL1L-RGBWW-1PP, ZJ-BWBL1H-RGBWW-1P, ZJ-BBL3L-RGBWW-Z,

ZJ-BBL3H-RGBWW-Z, ZJ-YBBL3L-RGBWW, ZJ-YBBL3H-RGBWW, ZJ-YBBL3H-CCT,

ZJ-YBBL3L-CCT, ZJ-YMBL3L-CCT-8S, ZJ-YMBL3H-CCT, ZJ-TMBL3L-RGBWW,

ZJ-TMBL3H-RGBWW, ZJ-BWBL1-RGBWW

Essential requirement		Applied Standards	Report Number
Art.3.1(a)	Health	EN IEC 62311:2020, EN 50665:2017	DL-20240320069-1E
Art.3.1(b)	EMC	ETSI EN 301 489-1 V2.2.3 (2019-11),	DL-20240320069-2E
Draft ETSI EN 301 489-17 V3.2.5 (2022-		Draft ETSI EN 301 489-17 V3.2.5 (2022-08)	
Art.3.2	Radio	ETSI EN 300 328 V2.2.2 (2019-07)	DL-20240320069-3E
Art.3.1(a)	Safety	EN 62560:2012+A1:2015+A11:2019	DL-20240320069-4S

The EUT described above has been tested by us with the listed standards and found in compliance with the council Radio Equipment Directive(RED) 2014/53/EU. It is possible to use CE marking to demonstrate the compliance with this RE Directive. It is only valid in connection with the test report number as listed.

This certificate of conformity is based on a single evaluation of the submitted sample(s) of the above mentioned product. It does not imply an assessment of the whole product and relevant. Without the written approval, It is not permitted to use the test lab's logo.

Shenzhen DL Testing Technology Co., Ltd.

101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1 Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China

FCC Part 15C Test Report FCC ID: 2BDYX-ZJWBL

Report No.: DL-20240320070E

Applicant: JM Zengge Lighting Co., Ltd

Address: 5th Floor, Building 1, No. 19 Gaoxin East Road, jianghai District, jiangmen City

Manufacturer: JM Zengge Lighting Co., Ltd

Address: 5th Floor, Building 1, No. 19 Gaoxin East Road, jianghai District, jiangmen City

EUT: Smart led bulb

Trade Mark: N/A

ZJ-WBL4H-RGBWW-SM

ZJ-WBL4L-RGBWW-SM, ZJ-BWBL1H-RGBWW-B22-1P, ZJ-WBL3L-RGBWW-SM,

ZJ-WBL3H-RGBWW-SM, ZJ-BWBOL-RGBWW, ZJ-BWBOH-RGBWW,

Model Number: ZJ-WBOL-RGBWW-SM, ZJ-BWBL1L-RGBWW-1PP, ZJ-BWBL1H-RGBWW-1P,

ZJ-BBL3L-RGBWW-Z, ZJ-BBL3H-RGBWW-Z, ZJ-YBBL3L-RGBWW,

ZJ-YBBL3H-RGBWW, ZJ-YBBL3H-CCT, ZJ-YBBL3L-CCT, ZJ-YMBL3L-CCT-8S, ZJ-YMBL3H-CCT, ZJ-TMBL3L-RGBWW, ZJ-TMBL3H-RGBWW, ZJ-BWBL1-RGBWW

Date of Receipt: Mar. 20, 2024

Test Date: Mar. 20, 2024 - Mar. 28, 2024

Date of Report: Mar. 28, 2024

Prepared By: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong

Street, Longgang District, Shenzhen, Guangdong, China

Applicable FCC PART 15 C 15.247 Standards: ANSI C63.10:2013

Test Result: Pass

Report Number: DL-20240320070E

Prepared (Test Engineer): Alisa Song

Reviewer (Supervisor): Jack Bu

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 1 of 45

Table of Contents Page 1. SUMMARY OF TEST RESULTS 4 1.1 MEASUREMENT UNCERTAINTY 4 2. GENERAL INFORMATION 5 2.1 GENERAL DESCRIPTION OF EUT 5 2.2 DESCRIPTION OF TEST MODES 6 2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED 6 2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE) 7 2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING 7 2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS 8 3. EMC EMISSION TEST 9 3.1 CONDUCTED EMISSION MEASUREMENT 9 3.1.1 POWER LINE CONDUCTED EMISSION LIMITS 9 3.1.2 TEST PROCEDURE 9 3.1.3 DEVIATION FROM TEST STANDARD 9 3.1.4 TEST SETUP 10 3.1.5 EUT OPERATING CONDITIONS 10 3.1.6 TEST RESULTS 10 3.2 RADIATED EMISSION MEASUREMENT 13 3.2.1 RADIATED EMISSION LIMITS 13 3.2.2 TEST PROCEDURE 14 3.2.3 DEVIATION FROM TEST STANDARD 14 3.2.4 TEST SETUP 14 3.2.5 EUT OPERATING CONDITIONS 15 3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ) 16 3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ) 17 3.2.8 TEST RESULTS (1GHZ~25GHZ) 19 3.3 RADIATED BAND EMISSION MEASUREMENT 23 3.3.1 TEST REQUIREMENT: 23 3.3.2 TEST PROCEDURE 23 3.3.3 DEVIATION FROM TEST STANDARD 23 3.3.4 TEST SETUP 24 3.3.5 EUT OPERATING CONDITIONS 24 3.4 CONDUCTED BAND EDGE EMISSION&CONDUCTED SPURIOUS EMISSIONS **MEASUREMENT** 29 3.4.1 APPLICABLE STANDARD 29 3.4.2 TEST PROCEDURE 29 3.4.3 DEVIATION FROM STANDARD 29 3.4.4 TEST SETUP 29

Shenzhen DL Testing Technology Co., Ltd. Report No.: DL-20240320070E

Table of Contents	Page
3.4.5 EUT OPERATION CONDITIONS 3.4.6 TEST RESULTS	29 29
4 . AVERAGE OUTPUT POWER	33
4.1 APPLIED PROCEDURES / LIMIT	33
4.1.1 TEST PROCEDURE	33
4.1.2 DEVIATION FROM STANDARD	33
4.1.3 TEST SETUP	33
4.1.4 EUT OPERATION CONDITIONS 4.1.5 TEST RESULTS	33 34
5 . POWER SPECTRAL DENSITY TEST	37
5.1 APPLIED PROCEDURES / LIMIT	37
5.1.1 TEST PROCEDURE	37
5.1.2 DEVIATION FROM STANDARD	37
5.1.3 TEST SETUP 5.1.4 EUT OPERATION CONDITIONS	37 37
5.1.5 TEST RESULTS	3 <i>7</i> 38
6 . 6DB BANDWIDTH TEST	41
6.1 APPLIED PROCEDURES / LIMIT	41
6.1.1 TEST PROCEDURE 6.1.2 DEVIATION FROM STANDARD	41 41
6.1.2 DEVIATION FROM STANDARD 6.1.3 TEST SETUP	41
6.1.4 EUT OPERATION CONDITIONS	41
6.1.5 TEST RESULTS	42
7 . ANTENNA REQUIREMENT	45
7.1 STANDARD REQUIREMENT	45
7.2 EUT ANTENNA	45
8 . TEST SEUUP PHOTO	45
9. EUT PHOTO	45

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 3 of 45

1. SUMMARY OF TEST RESULTS

Test procedures according to the technical standards:

FCC Part15 (15.247) , Subpart C					
Standard Section	Judgment	Remark			
15.207	Conducted Emission	PASS			
15.205, 15.209, 15.247(d)	Radiated Spurious Emission	PASS			
15.205, 15.247(d)	Band Edge Emission& Conducted Spurious Emissions	PASS			
15.247(b)	Average Output Power	PASS			
15.247(a)(2)	15.247(a)(2) 6dB Bandwidth				
15.247(e)	15.247(e) Power Spectral Density				
15.203	PASS				

Report No.: DL-20240320070E

NOTE:

(1)" N/A" denotes test is not applicable in this Test Report

Test lab: Shenzhen DL Testing Technology Co., Ltd.

Address: 101-201, Building C, Shuanghuan, No.8, Baoqing Road, Baolong Industrial Zone, Baolong

Street, Longgang District, Shenzhen, Guangdong, China

FCC Test Firm Registration Number: 854456

Designation Number: CN1307 IC Registered No.: 27485

CAB ID.: CN0118

1.1 MEASUREMENT UNCERTAINTY

The reported uncertainty of measurement $\mathbf{y} \pm \mathbf{U}$, where expended uncertainty \mathbf{U} is based on a standard uncertainty multiplied by a coverage factor of $\mathbf{k=2}$, providing a level of confidence of approximately 95 % \circ

No.	Item	Uncertainty
1	Conducted Emission Test	±2.56dB
2	RF power,conducted	±0.42dB
3	Spurious emissions,conducted	±2.76dB
4	All emissions,radiated(<1G)	±3.65dB
5	All emissions,radiated(>1G)	±4.89dB
6	Temperature	±0.5°C
7	Humidity	±2%
8	6dB Bandwidth	±0.2MHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 4 of 45

2. GENERAL INFORMATION

2.1 GENERAL DESCRIPTION OF EUT

Product Name:	Smart led bulb
Trademark	N/A
Model No.:	ZJ-WBL4H-RGBWW-SM ZJ-WBL4L-RGBWW-SM, ZJ-BWBL1H-RGBWW-B22-1P, ZJ-WBL3L-RGBWW-SM, ZJ-WBL3H-RGBWW-SM, ZJ-BWBOL-RGBWW, ZJ-BWBOH-RGBWW, ZJ-WBOL-RGBWW-SM, ZJ-BWBL1L-RGBWW-1PP, ZJ-BWBL1H-RGBWW-1P, ZJ-BBL3L-RGBWW-Z, ZJ-BBL3H-RGBWW-Z, ZJ-YBBL3L-RGBWW, ZJ-YBBL3H-RGBWW, ZJ-YBBL3H-CCT, ZJ-YBBL3L-CCT, ZJ-YMBL3L-CCT-8S, ZJ-YMBL3H-CCT, ZJ-TMBL3L-RGBWW, ZJ-TMBL3H-RGBWW, ZJ-BWBL1-RGBWW
Model Difference	The product's different for model number and appearance color.
Operation Frequency:	2412~2462 MHz for 802.11b/g/nHT20 2422~2452 MHz for 802.11nHT40
Channel numbers:	11 Channels for 802.11b/g/n(HT20) 7 channels for 802.11nHT40
Channel separation:	5MHz
Modulation technology:	802.11b: DSSS (CCK, DQPSK, DBPSK) 802.11g/n(20/40): OFDM(QPSK, BPSK, 16-QAM, 64-QAM)
Rate of Transmitter	802.11b: 11/5.5/2/1Mbps 802.11g: 54/48/36/24/18/12/9/6Mbps 802.11n: up to 150Mbps
Antenna Type:	Internal Antenna
Antenna gain:	1.08dBi
Power Supply:	AC100-130V 50/60Hz

Report No.: DL-20240320070E

Note:

1. For a more detailed features description, please refer to the manufacturer's specifications or the User's Manual.

2. The EUT's all information provided by client.

2. Channel List(802.11b/g/nHT20)

Channel	Frequency (GHz)	Channel	Frequency (GHz)
01	2.412	07	2.442
02	2.417	08	2.447
03	2.422	09	2.452
04	2.427	10	2.457
05	2.432	11	2.462
06	2.437		

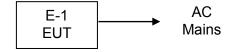
Channel List(802.11nHT40)

Channel	Frequency (GHz)	Channel	Frequency (GHz)
03	2.422	07	2.442
04	2.427	08	2.447
05	2.432	09	2.452
06	2.437		

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 5 of 45

2.2 DESCRIPTION OF TEST MODES

To investigate the maximum EMI emission characteristics generates from EUT, the test system was pre-scanning tested base on the consideration of following EUT operation mode or test configuration mode which possible have effect on EMI emission level. Each of these EUT operation mode(s) or test configuration mode(s) mentioned above was evaluated respectively.


Report No.: DL-20240320070E

Pretest Mode	Description
Mode 1	802.11b CH1/ CH6/ CH11
Mode 2	802.11g CH1/ CH6/ CH11
Mode 3	802.11nHT20 CH1/ CH6/ CH11
Mode 4	802.11nHT40 CH3/ CH6/ CH09
Mode 5	Link Mode
	For Conducted Emission
Final Test Mode	Description
Mode 5	Link Mode
	For Radiated Emission
Final Test Mode	Description
Mode 1	802.11b CH1/ CH6/ CH11
Mode 2	802.11g CH1/ CH6/ CH11
Mode 3	802.11nHT20 CH1/ CH6/ CH11
Mode 4	802.11nHT40 CH3/ CH6/ CH09
Mode 5	Link Mode

Note: 1. The measurements are performed at the highest, middle, lowest available channels.

2.3 BLOCK DIGRAM SHOWING THE CONFIGURATION OF SYSTEM TESTED

Radiated Spurious Emission Test

Conducted Spurious Emission Test

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 6 of 45

^{2.} During the test, the duty cycle >98%, the test voltage was tuned from 85% to 115% of the nominal rated supply voltage, and found that the worst case was under the nominal rated supply condition. So the report just shows that condition's data.

Shenzhen DL Testing Technology Co., Ltd.

2.4 DESCRIPTION OF SUPPORT UNITS(CONDUCTED MODE)

The EUT has been tested as an independent unit together with other necessary accessories or support units. The following support units or accessories were used to form a representative test configuration during the tests.

Report No.: DL-20240320070E

Item	Equipment	Model/Type No.	Series No.	Note	
E-1	Smart led bulb	ZJ-WBL4H-RGBWW-SM	N/A	EUT	

Item	Shielded Type	Ferrite Core	Length	Note

Note:

(1) For detachable type I/O cable should be specified the length in cm in <code>FLength</code> <code>_</code> column.

2.5 TABLE OF PARAMETERS OF TEST SOFTWARE SETTING

During testing, channel & power controlling software provided by the customer was used to control the operating channel as well as the output power level. The RF output power selection is for the setting of RF output power expected by the customer and is going to be fixed on the end product.

Max output power Setting					
Test software Version Test program: Wifi_Test_Tool_V1.7.4					
Mode	802.11b	802.11g	802.11n HT20	802.11n HT40	
Data Rate	1Mbps	6Mbps	MSC0	MSC0	
Power Setting of Softwave	60	60	60	66	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 7 of 45

2.6 EQUIPMENTS LIST FOR ALL TEST ITEMS

Radiation test, Band-edge test and 6db bandwidth test equipment

Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	Spectrum Analyzer (9kHz-26.5GHz)	Agilent	E4408B	MY50140780	Nov. 05, 2023	Nov. 04, 2024
2	Test Receiver (9kHz-7GHz)	R&S	ESRP7	101393	Nov. 05, 2023	Nov. 04, 2024
3	Bilog Antenna (30MHz-1GHz)	R&S	VULB9162	00306	Nov. 05, 2023	Nov. 04, 2024
4	Horn Antenna (1GHz-18GHz)	Schwarzbeck	BBHA9120D	02139	Nov. 05, 2023	Nov. 04, 2024
5	Horn Antenna (18GHz-40GHz)	A.H. Systems	SAS-574	588	Nov. 05, 2023	Nov. 04, 2024
6	Amplifier (9KHz-6GHz)	Schwarzbeck	BBV9743B	00153	Nov. 05, 2023	Nov. 04, 2024
7	Amplifier (1GHz-18GHz)	EMEC	EM01G8GA	00270	Nov. 05, 2023	Nov. 04, 2024
8	Amplifier (18GHz-40GHz)	Quanjuda	DLE-161	97	Nov. 05, 2023	Nov. 04, 2024
9	Loop Antenna (9KHz-30MHz)	Schwarzbeck	FMZB1519B	00014	Nov. 05, 2023	Nov. 04, 2024
10	RF cables1 (9kHz-1GHz)	ChengYu	966	004	Nov. 05, 2023	Nov. 04, 2024
11	RF cables2 (1GHz-40GHz)	ChengYu	966	003	Nov. 05, 2023	Nov. 04, 2024
12	Antenna connector	Florida RF Labs	N/A	RF 01#	Nov. 05, 2023	Nov. 04, 2024
13	Power probe	KEYSIGHT	U2021XA	MY55210018	Nov. 05, 2023	Nov. 04, 2024
14	Signal Analyzer 9kHz-26.5GHz	Agilent	N9020A	MY55370280	Nov. 05, 2023	Nov. 04, 2024
15	Test Receiver 20kHz-40GHz	R&S	ESU 40	100376	Nov. 05, 2023	Nov. 04, 2024
16	D.C. Power Supply	LongWei	PS-305D	010964729	Nov. 05, 2023	Nov. 04, 2024

Conduction Test equipment

Cond	action rest equipmen					
Item	Equipment	Manufacturer	Type No.	Serial No.	Last calibration	Calibrated until
1	843 Shielded Room	ChengYu	843 Room	843	Sep. 20, 2022	Sep. 19, 2025
2	EMI Receiver	R&S	ESR	101421	Nov. 05, 2023	Nov. 04, 2024
3	LISN	R&S	ENV216	102417	Nov. 05, 2023	Nov. 04, 2024
4	843 Cable 1#	ChengYu	CE Cable	001	Nov. 05, 2023	Nov. 04, 2024

Other

Item	Name Manufac		Model	Software version
1	EMC Conduction Test System	FALA	EZ_EMC	EMC-CON 3A1.1
2	EMC radiation test system	FALA	EZ_EMC	FA-03A2
3	RF test system	MAIWEI	MTS8310	2.0.0.0
4	RF communication test system	MAIWEI	MTS8200	2.0.0.0

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 8 of 45

3. EMC EMISSION TEST

3.1 CONDUCTED EMISSION MEASUREMENT

3.1.1 POWER LINE CONDUCTED EMISSION Limits

(Frequency Range 150KHz-30MHz)

Report No.: DL-20240320070E

FREQUENCY (MHz)	Limit (dB	Standard	
FREQUENCT (MITZ)	Quasi-peak	Average	Statitualu
0.15 -0.50	66 - 56 *	56 - 46 *	FCC
0.50 -5.0	56.00	46.00	FCC
5.0 -30.0	60.00	50.00	FCC

Note:

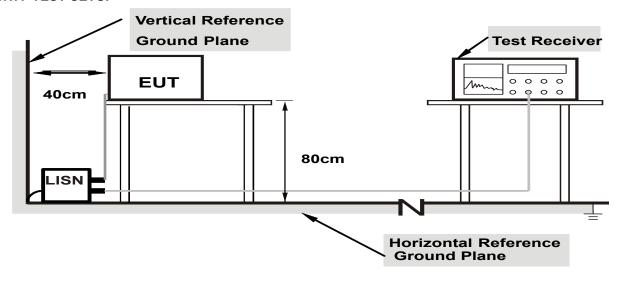
- (1) The tighter limit applies at the band edges.
- (2) The limit of " * " marked band means the limitation decreases linearly with the logarithm of the frequency in the range.

The following table is the setting of the receiver

Receiver Parameters	Setting
Attenuation	10 dB
Start Frequency	0.15 MHz
Stop Frequency	30 MHz
IF Bandwidth	9 kHz

3.1.2 TEST PROCEDURE

- a. The EUT was placed 0.8 meters from the horizontal ground plane with EUT being connected to the power mains through a line impedance stabilization network (LISN). All other support equipments powered from additional LISN(s). The LISN provide 50 Ohm/ 50uH of coupling impedance for the measuring instrument.
- b. Interconnecting cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle 30 to 40 cm long.
- c. I/O cables that are not connected to a peripheral shall be bundled in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- d. LISN at least 80 cm from nearest part of EUT chassis.
- e. For the actual test configuration, please refer to the related Item -EUT Test Photos.


3.1.3 DEVIATION FROM TEST STANDARD

No deviation

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 9 of 45

3.1.4 TEST SETUP

Report No.: DL-20240320070E

Note: 1.Support units were connected to second LISN.

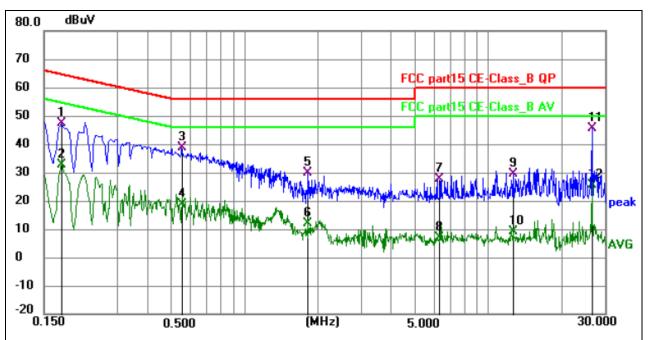
2.Both of LISNs (AMN) are 80 cm from EUT and at least 80 from other units and other metal planes

3.1.5 EUT OPERATING CONDITIONS

The EUT was configured for testing in a typical fashion (as a customer would normally use it). The EUT has been programmed to continuously transmit during test. This operating condition was tested and used to collect the included data.

We pretest AC 120V and AC 230V, the worst voltage was AC 120V and the data recording in the report.

3.1.6 TEST RESULTS


Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 10 of 45

Shenzhen DL Testing Technology Co., Ltd.

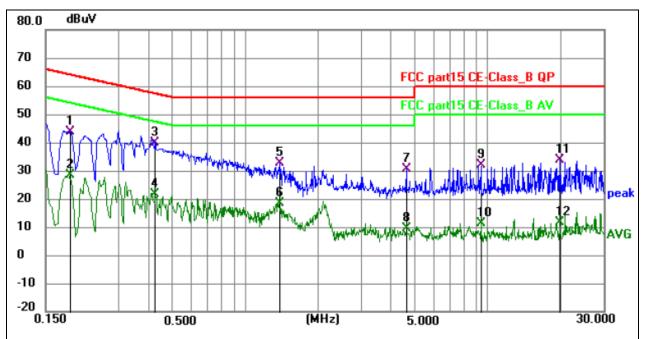
Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	L
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 5

Report No.: DL-20240320070E

Remark:

Margin = Limit – Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1770	37.28	9.99	47.27	64.63	-17.36	QP	Р	
2	0.1770	22.82	9.99	32.81	54.63	-21.82	AVG	Р	
3	0.5550	29.55	9.33	38.88	56.00	-17.12	QP	Р	
4	0.5550	9.49	9.33	18.82	46.00	-27.18	AVG	Р	
5	1.8240	19.98	9.86	29.84	56.00	-26.16	QP	Р	
6	1.8240	2.04	9.86	11.90	46.00	-34.10	AVG	Р	
7	6.2743	17.71	9.98	27.69	60.00	-32.31	QP	Р	
8	6.2743	-3.04	9.98	6.94	50.00	-43.06	AVG	Р	
9	12.6014	19.21	10.18	29.39	60.00	-30.61	QP	Р	
10	12.6014	-1.24	10.18	8.94	50.00	-41.06	AVG	Р	
11 *	26.6415	34.49	11.21	45.70	60.00	-14.30	QP	Р	
12	26.6415	14.27	11.21	25.48	50.00	-24.52	AVG	Р	


Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 11 of 45

Shenzhen DL Testing Technology Co., Ltd.

Temperature:	25 ℃	Relative Humidity:	54%
Pressure:	1010hPa	Phase :	Ν
Test Voltage :	AC 120V/60Hz	Test Mode:	Mode 5

Report No.: DL-20240320070E

Remark:

Margin = Limit – Level, Correct Factor = Cable lose + LISN insertion loss, Level= Reading + Correct factor

No.	Frequency (MHz)	Reading (dBuV)	Factor (dB)	Level (dBuV)	Limit (dBuV)	Margin (dB)	Detector	P/F	Remark
1	0.1905	34.64	9.18	43.82	64.01	-20.19	QP	Р	
2	0.1905	19.25	9.18	28.43	54.01	-25.58	AVG	Р	
3 *	0.4244	30.52	9.33	39.85	57.36	-17.51	QP	Р	
4	0.4244	12.36	9.33	21.69	47.36	-25.67	AVG	Р	
5	1.3920	23.01	9.64	32.65	56.00	-23.35	QP	Р	
6	1.3920	8.89	9.64	18.53	46.00	-27.47	AVG	Р	
7	4.6455	20.60	10.06	30.66	56.00	-25.34	QP	Р	
8	4.6455	-0.70	10.06	9.36	46.00	-36.64	AVG	Р	
9	9.3795	21.85	10.26	32.11	60.00	-27.89	QP	Р	
10	9.3795	0.95	10.26	11.21	50.00	-38.79	AVG	Р	
11	19.7474	23.25	10.40	33.65	60.00	-26.35	QP	Р	
12	19.7474	1.32	10.40	11.72	50.00	-38.28	AVG	Р	

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 12 of 45

3.2 RADIATED EMISSION MEASUREMENT

3.2.1 RADIATED EMISSION LIMITS (Frequency Range 9kHz-1000MHz)

In case the emission fall within the restricted band specified on 15.205(a), then the 15.209(a) limit in the table below has to be followed.

Report No.: DL-20240320070E

Frequencies	Field Strength	Measurement Distance
(MHz)	(micorvolts/meter)	(meters)
0.009~0.490	2400/F(KHz)	300
0.490~1.705	24000/F(KHz)	30
1.705~30.0	30	30
30~88	100	3
88~216	150	3
216~960	200	3
Above 960	500	3

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

FREQUENCY (MHz)	Limit (dBuV/m) (at 3M)			
	PEAK	AVERAGE		
Above 1000	74	54		

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	1000 MHz
Stop Frequency	25GHz
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

Receiver Parameter	Setting
Attenuation	Auto
Start ~ Stop Frequency	9kHz~150kHz / RB 200Hz for QP
Start ~ Stop Frequency	150kHz~30MHz / RB 9kHz for QP
Start ~ Stop Frequency	30MHz~1000MHz / RB 120kHz for QP

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 13 of 45

3.2.2 TEST PROCEDURE

Below 1GHz test procedure as below:

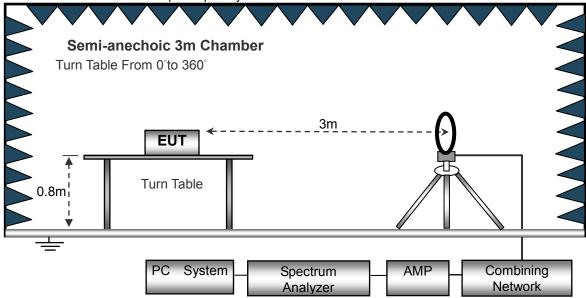
- a. The EUT was placed on the top of a rotating table 0.8 meters above the ground at a 3 meter semi-anechoic camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.

Report No.: DL-20240320070E

- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters (for the test frequency of below 30MHz, the antenna was tuned to heights 1 meter) and the rotatable table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.

Above 1GHz test procedure as below:

- g. Different between above is the test site, change from Semi- Anechoic Chamber to fully Anechoic Chamber and change form table 0.8 metre to 0.8 metre (Above 18GHz the distance is 1 meter and table is 1.5 metre).
- h. Test the EUT in the lowest channel, the middle channel, the Highest channel Note:


Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.2.3 DEVIATION FROM TEST STANDARD

No deviation

3.2.4 TEST SETUP

(A) Radiated Emission Test-Up Frequency Below 30MHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 14 of 45

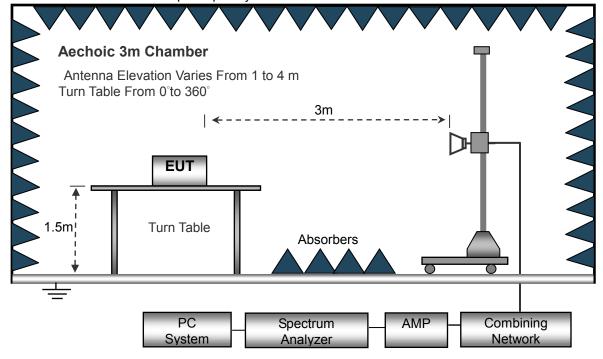
Combining

Network

Semi-anechoic 3m Chamber
Antenna Elevation Varies From 1 to 4 m
Turn Table From 0°to 360°

FUT

Turn Table


Spectrum

Analyzer

PC

System

3.2.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 15 of 45

Shenzhen DL Testing Technology Co., Ltd.

3.2.6 TEST RESULTS (BETWEEN 9KHZ - 30 MHZ)

Temperature:	20℃	Relative Humidtity:	48%
Pressure:	1010 hPa	Test Voltage :	AC 120V/60Hz
Test Mode :	Mode 5	Polarization :	

Report No.: DL-20240320070E

Freq.	Reading	Limit	Margin	State
(MHz)	(dBuV/m)	(dBuV/m)	(dB)	P/F
				PASS
				PASS

NOTE:

The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Distance extrapolation factor =40 log (specific distance/test distance)(dB);

Limit line = specific limits(dBuv) + distance extrapolation factor.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 16 of 45

3.2.7 TEST RESULTS (BETWEEN 30MHZ - 1GHZ)

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization:	Horizontal
Test Voltage :	AC 120V/60Hz		
Test Mode :	Mode 5		

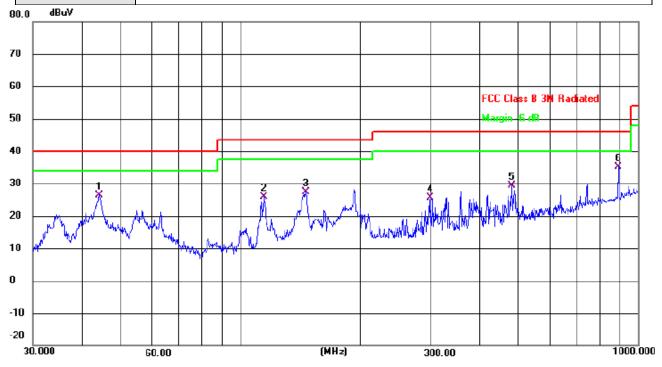
Report No.: DL-20240320070E

No.	Mk.	Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
		MHz	dBuV	dB	dBuV	dB	dB	Detector
1		63.5356	28.18	-13.66	14.52	40.00	-25.48	QP
2		114.1138	33.26	-16.52	16.74	43.50	-26.76	QP
3		153.7385	40.58	-17.61	22.97	43.50	-20.53	QP
4	:	242.5253	28.38	-13.02	15.36	46.00	-30.64	QP
5	,	359.1860	42.14	-10.45	31.69	46.00	-14.31	QP
6	*	475.4991	47.02	-8.09	38.93	46.00	-7.07	QP

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;


Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 17 of 45

Shenzhen DL Testing Technology Co., Ltd.

Temperature:	26 ℃	Relative Humidity:	54%
Pressure:	1010 hPa	Polarization :	Vertical
Test Voltage :	AC 120V/60Hz		
Test Mode :	Mode 5		

Report No.: DL-20240320070E

No.	Mk	. Freq.	Reading Level	Correct Factor	Measure- ment	Limit	Margin	
		MHz	dBuV	dB	dBuV	dB	dB	Detector
1		44.1202	40.05	-13.57	26.48	40.00	-13.52	QP
2		114.5146	42.50	-16.52	25.98	43.50	-17.52	QP
3		145.8611	45.06	-17.66	27.40	43.50	-16.10	QP
4		300.3672	37.15	-11.41	25.74	46.00	-20.26	QP
5		480.5276	37.35	-7.98	29.37	46.00	-16.63	QP
6	*	890.7277	35.85	-0.67	35.18	46.00	-10.82	QP

Remark:

Correct Factor = Cable loss + Antenna factor – Preamplifier;

Level = Reading Level + Correct Factor; Margin = Level - Limit;

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 18 of 45

3.2.8 TEST RESULTS (1GHZ~25GHZ)

802.11b

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Type
	((0.20.1)			requency:2		(0.20.7711)	(4.2)	
V	4824	67.23	50.65	6.88	31.29	54.75	74	-19.25	PK
V	4824	55.85	50.65	6.88	31.29	43.37	54	-10.63	AV
V	7236	66.26	49.98	7.16	36.63	60.07	74	-13.93	PK
V	7236	46.97	49.98	7.16	36.63	40.78	54	-13.22	AV
V	16087	48.52	51.53	11.34	41.52	49.85	74	-24.15	PK
Н	4824	66.49	50.65	6.88	31.29	54.01	74	-19.99	PK
Н	4824	55.34	50.65	6.88	31.29	42.86	54	-11.14	AV
Н	7236	69.11	49.98	7.16	36.63	62.92	74	-11.08	PK
Н	7236	45.63	49.98	7.16	36.63	39.44	54	-14.56	AV
Н	16087	48.68	51.53	11.34	41.52	50.01	74	-23.99	PK
			оре	eration f	requency:2	2437			
V	4874	67.23	50.67	6.89	31.38	54.83	74	-19.17	PK
V	4874	55.24	50.67	6.89	31.38	42.84	54	-11.16	AV
V	7311	69.52	50.02	7.24	36.63	63.37	74	-10.63	PK
V	7311	46.53	50.02	7.24	36.63	40.38	54	-13.62	AV
V	16087	48.58	51.53	11.34	41.52	49.91	74	-24.09	PK
Η	4874	66.54	50.67	6.89	31.38	54.14	74	-19.86	PK
Н	4874	55.11	50.67	6.89	31.38	42.71	54	-11.29	AV
Н	7311	69.89	50.02	7.24	36.63	63.74	74	-10.26	PK
Н	7311	47.65	50.02	7.24	36.63	41.5	54	-12.5	AV
Н	16087	48.72	51.53	11.34	41.52	50.05	74	-23.95	PK
			ор	eration f	requency:2	2462			
V	4924	68.69	50.79	6.83	31.36	55.75	74	-18.25	PK
V	4924	55.58	50.79	6.83	31.36	43.16	54	-10.84	AV
V	7386	69.66	50.11	7.25	36.58	62.99	74	-11.01	PK
V	7386	46.61	50.11	7.25	36.58	40.14	54	-13.86	AV
V	16087	49.88	51.53	11.34	41.52	50.57	74	-23.43	PK
Н	4924	67.66	50.79	6.83	31.36	55.06	74	-18.94	PK
Н	4924	55.67	50.79	6.83	31.36	42.68	54	-11.32	AV
Н	7386	67.24	50.11	7.25	36.58	61.11	74	-12.89	PK
Н	7386	48.83	50.11	7.25	36.58	41.94	54	-12.06	AV
Н	16087	49.65	51.53	11.34	41.52	50.47	74	-23.53	PK

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 19 of 45

802.11g

<u> </u>	-	Meter	Pre-	Cable	Antenna	Emission	1.224	N#	5.4.4
Polar (H/V)	Frequency	Reading	amplifier	Loss	Factor	Level	Limits	Margin	Detector
(m/v)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Туре
	T	1			requency:2			T	
V	4824	67.33	50.65	6.88	31.29	54.85	74	-19.15	PK
V	4824	55.99	50.65	6.88	31.29	43.51	54	-10.49	AV
V	7236	66.64	49.98	7.16	36.63	60.45	74	-13.55	PK
V	7236	46.48	49.98	7.16	36.63	40.29	54	-13.71	AV
V	16087	49.32	51.53	11.34	41.52	50.65	74	-23.35	PK
Н	4824	69.46	50.65	6.88	31.29	56.98	74	-17.02	PK
Н	4824	52.25	50.65	6.88	31.29	39.77	54	-14.23	AV
Н	7236	66.35	49.98	7.16	36.63	60.16	74	-13.84	PK
Н	7236	47.79	49.98	7.16	36.63	41.6	54	-12.4	AV
Н	16087	47.39	51.53	11.34	41.52	48.72	74	-25.28	PK
			op	eration f	requency:2	2437	1	1	
V	4874	67.14	50.67	6.89	31.38	54.74	74	-19.26	PK
V	4874	55.42	50.67	6.89	31.38	43.02	54	-10.98	AV
V	7311	66.99	50.02	7.24	36.63	60.84	74	-13.16	PK
V	7311	46.24	50.02	7.24	36.63	40.09	54	-13.91	AV
V	16087	48.35	51.53	11.34	41.52	49.68	74	-24.32	PK
Н	4874	66.63	50.67	6.89	31.38	54.23	74	-19.77	PK
Н	4874	55.35	50.67	6.89	31.38	42.95	54	-11.05	AV
Н	7311	65.24	50.02	7.24	36.63	59.09	74	-14.91	PK
Н	7311	47.77	50.02	7.24	36.63	41.62	54	-12.38	AV
Н	16087	48.43	51.53	11.34	41.52	49.76	74	-24.24	PK
			ор	eration f	requency:2	2462			
V	4924	67.18	50.79	6.83	31.36	54.58	74	-19.42	PK
V	4924	55.26	50.79	6.83	31.36	42.66	54	-11.34	AV
V	7386	66.44	50.11	7.25	36.58	60.16	74	-13.84	PK
V	7386	47.52	50.11	7.25	36.58	41.24	54	-12.76	AV
V	16087	46.29	51.53	11.34	41.52	47.62	74	-26.38	PK
Н	4924	66.85	50.79	6.83	31.36	54.25	74	-19.75	PK
Н	4924	54.36	50.79	6.83	31.36	41.76	54	-12.24	AV
Н	7386	65.34	50.11	7.25	36.58	59.06	74	-14.94	PK
Н	7386	45.85	50.11	7.25	36.58	39.57	54	-14.43	AV
Н	16087	47.82	51.53	11.34	41.52	49.15	74	-24.85	PK

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 20 of 45

802.11n HT20

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Type
	(**************************************	(0.20.1)			requency:2		(()	
V	4824	66.33	50.65	6.88	31.29	53.85	74	-20.15	PK
V	4824	55.28	50.65	6.88	31.29	42.8	54	-11.2	AV
V	7236	66.54	49.98	7.16	36.63	60.35	74	-13.65	PK
V	7236	46.06	49.98	7.16	36.63	39.87	54	-14.13	AV
V	16087	46.27	51.53	11.34	41.52	47.6	74	-26.4	PK
Н	4824	66.62	50.65	6.88	31.29	54.14	74	-19.86	PK
Н	4824	55.96	50.65	6.88	31.29	43.48	54	-10.52	AV
Н	7236	64.44	49.98	7.16	36.63	58.25	74	-15.75	PK
Н	7236	47.68	49.98	7.16	36.63	41.49	54	-12.51	AV
Н	16087	47.69	51.53	11.34	41.52	49.02	74	-24.98	PK
			ор	eration f	requency:2	2437			
٧	4874	66.24	50.67	6.89	31.38	53.84	74	-20.16	PK
V	4874	54.68	50.67	6.89	31.38	42.28	54	-11.72	AV
V	7311	65.93	50.02	7.24	36.63	59.78	74	-14.22	PK
V	7311	47.44	50.02	7.24	36.63	41.29	54	-12.71	AV
V	16087	47.89	51.53	11.34	41.52	49.22	74	-24.78	PK
Н	4874	65.92	50.67	6.89	31.38	53.52	74	-20.48	PK
Н	4874	53.29	50.67	6.89	31.38	40.89	54	-13.11	AV
Н	7311	65.15	50.02	7.24	36.63	59	74	-15	PK
Н	7311	46.36	50.02	7.24	36.63	40.21	54	-13.79	AV
Н	16087	46.48	51.53	11.34	41.52	47.81	74	-26.19	PK
			ор	eration f	requency:2	2462			
V	4924	67.32	50.79	6.83	31.36	54.72	74	-19.28	PK
V	4924	54.83	50.79	6.83	31.36	42.23	54	-11.77	AV
V	7386	64.68	50.11	7.25	36.58	58.4	74	-15.6	PK
V	7386	46.16	50.11	7.25	36.58	39.88	54	-14.12	AV
V	16087	48.36	51.53	11.34	41.52	49.69	74	-24.31	PK
Н	4924	67.88	50.79	6.83	31.36	55.28	74	-18.72	PK
Н	4924	54.85	50.79	6.83	31.36	42.25	54	-11.75	AV
Н	7386	65.23	50.11	7.25	36.58	58.95	74	-15.05	PK
Н	7386	47.58	50.11	7.25	36.58	41.3	54	-12.7	AV
Н	16087	47.96	51.53	11.34	41.52	49.29	74	-24.71	PK

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 21 of 45

802.11n HT40

Polar	Frequency	Meter	Pre-	Cable	Antenna	Emission	Limits	Margin	Detector
(H/V)		Reading	amplifier	Loss	Factor	Level			Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m) requency:2	(dBuV/m)	(dBuV/m)	(dB)	
V	4844	66.14	50.67	6.89	31.32	53.68	74	-20.32	PK
V	4844	55.52	50.67	6.89	31.32	43.06	54	-10.94	AV
V	7266	66.89	50.01	7.15	36.62	60.65	74	-13.35	PK
V	7266	46.74	50.01	7.15	36.62	40.5	54	-13.5	AV
V	16087	46.52	51.53	11.34	41.52	47.85	74	-26.15	PK
Н	4844	66.26	50.67	6.89	31.32	53.8	74	-20.2	PK
Н	4844	55.69	50.67	6.89	31.32	43.23	54	-10.77	AV
Н	7266	64.65	50.01	7.15	36.62	58.41	74	-15.59	PK
Н	7266	47.99	50.01	7.15	36.62	41.75	54	-12.25	AV
Н	16087	47.14	51.53	11.34	41.52	48.47	74	-25.53	PK
		l	op	eration f	requency:2	2437			
V	4874	66.68	50.67	6.89	31.38	54.28	74	-19.72	PK
V	4874	54.63	50.67	6.89	31.38	42.23	54	-11.77	AV
V	7311	65.41	50.02	7.24	36.63	59.26	74	-14.74	PK
V	7311	46.69	50.02	7.24	36.63	40.54	54	-13.46	AV
V	16087	47.25	51.53	11.34	41.52	48.58	74	-25.42	PK
Н	4874	65.56	50.67	6.89	31.38	53.16	74	-20.84	PK
Н	4874	53.84	50.67	6.89	31.38	41.44	54	-12.56	AV
Н	7311	65.68	50.02	7.24	36.63	59.53	74	-14.47	PK
Н	7311	47.26	50.02	7.24	36.63	41.11	54	-12.89	AV
Н	16087	46.22	51.53	11.34	41.52	47.55	74	-26.45	PK
			ор	eration f	requency:2	2452			
V	4904	67.52	50.76	6.81	31.31	54.88	74	-19.12	PK
V	4904	54.46	50.76	6.81	31.31	41.82	54	-12.18	AV
V	7356	64.47	50.08	7.21	36.52	58.12	74	-15.88	PK
V	7356	47.39	50.08	7.21	36.52	41.04	54	-12.96	AV
V	16087	48.35	51.53	11.34	41.52	49.68	74	-24.32	PK
Н	4904	67.23	50.76	6.81	31.31	54.59	74	-19.41	PK
Н	4904	54.88	50.76	6.81	31.31	42.24	54	-11.76	AV
Н	7356	65.24	50.08	7.21	36.52	58.89	74	-15.11	PK
Н	7356	46.76	50.08	7.21	36.52	40.41	54	-13.59	AV
Н	16087	47.27	51.53	11.34	41.52	48.6	74	-25.4	PK

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 22 of 45

Shenzhen DL Testing Technology Co., Ltd.

Report No.: DL-20240320070E

3.3 RADIATED BAND EMISSION MEASUREMENT 3.3.1 TEST REQUIREMENT:

FCC Part15 C Section 15.209 and 15.205

LIMITS OF RADIATED EMISSION MEASUREMENT (Above 1000MHz)

EDEOLIENCY (MHz)	Limit (dBuV/m) (at 3M)				
FREQUENCY (MHz)	PEAK	AVERAGE			
Above 1000	74	54			

Notes:

- (1) The limit for radiated test was performed according to FCC PART 15C.
- (2) The tighter limit applies at the band edges.
- (3) Emission level (dBuV/m)=20log Emission level (uV/m).

Spectrum Parameter	Setting
Attenuation	Auto
Start Frequency	2300MHz
Stop Frequency	2520
RB / VB (emission in restricted band)	1 MHz / 1 MHz for Peak, 1 MHz / 10Hz for Average

3.3.2 TEST PROCEDURE

Above 1GHz test procedure as below:

- a. 1. The EUT was placed on the top of a rotating table 0.1 meters above the ground at a 3 meter camber. The table was rotated 360 degrees to determine the position of the highest radiation.
- b. The EUT was set 3 meters away from the interference-receiving antenna, which was mounted on the top of a variable-height antenna tower.
- c. The antenna height is varied from one meter to four meters above the ground to determine the maximum value of the field strength. Both horizontal and vertical polarizations of the antenna are set to make the measurement.
- d. For each suspected emission, the EUT was arranged to its worst case and then the antenna was tuned to heights from 1 meter to 4 meters and the rota table was turned from 0 degrees to 360 degrees to find the maximum reading.
- e. The test-receiver system was set to Peak Detect Function and Specified Bandwidth with Maximum Hold Mode.
- f. If the emission level of the EUT in peak mode was 10dB lower than the limit specified, then testing could be stopped and the peak values of the EUT would be reported. Otherwise the emissions that did not have 10dB margin would be re-tested one by one using peak, quasi-peak or average method as specified and then reported in a data sheet.
- g. Test the EUT in the lowest channel, the Highest channel

Note:

Both horizontal and vertical antenna polarities were tested and performed pretest to three orthogonal axis. The worst case emissions were reported

3.3.3 DEVIATION FROM TEST STANDARD

No deviation

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 23 of 45

3.3.4 TEST SETUP

Aechoic 3m Chamber

Antenna Elevation Varies From 1 to 4 m
Turn Table From 0 to 360

Turn Table

Absorbers

PC
System

AMP
Combining
Network

3.3.5 EUT OPERATING CONDITIONS

The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 24 of 45

3.3.6 TEST RESULT

802.11b

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
` '	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	,
			ор	eration f	requency:2	2412			
V	2390	76.62	52.12	2.73	27.38	54.61	74	-19.39	PK
V	2390	65.79	52.12	2.73	27.38	43.78	54	-10.22	AV
V	2400	76.12	52.16	2.78	27.41	54.15	74	-19.85	PK
V	2400	64.69	52.16	2.78	27.41	42.72	54	-11.28	AV
Н	2390	76.35	52.12	2.73	27.38	54.34	74	-19.66	PK
Н	2390	65.23	52.12	2.73	27.38	43.22	54	-10.78	AV
Н	2400	76.68	52.16	2.78	27.41	54.71	74	-19.29	PK
Н	2400	65.26	52.16	2.78	27.41	43.29	54	-10.71	AV

Report No.: DL-20240320070E

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	
	T	T	ор	eration f	requency:2	2462		T	
V	2483.5	76.27	52.23	2.86	27.44	54.34	74	-19.66	PK
V	2483.5	65.36	52.23	2.86	27.44	43.43	54	-10.57	AV
V	2500	76.25	52.26	2.88	27.49	54.36	74	-19.64	PK
V	2500	64.33	52.26	2.88	27.49	42.44	54	-11.56	AV
Н	2483.5	76.54	52.23	2.86	27.44	54.61	74	-19.39	PK
Н	2483.5	65.19	52.23	2.86	27.44	43.26	54	-10.74	AV
Н	2500	76.74	52.26	2.88	27.49	54.85	74	-19.15	PK
Н	2500	65.25	52.26	2.88	27.49	43.36	54	-10.64	AV

Remark:

- Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 25 of 45

802.11g

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(11/4)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Туре
			ор	eration f	requency:2	2412			
V	2390	76.56	52.12	2.73	27.38	54.55	74	-19.45	PK
V	2390	65.47	52.12	2.73	27.38	43.46	54	-10.54	AV
V	2400	76.66	52.16	2.78	27.41	54.69	74	-19.31	PK
V	2400	64.35	52.16	2.78	27.41	42.38	54	-11.62	AV
Н	2390	76.36	52.12	2.73	27.38	54.35	74	-19.65	PK
Н	2390	65.44	52.12	2.73	27.38	43.43	54	-10.57	AV
Н	2400	76.68	52.16	2.78	27.41	54.71	74	-19.29	PK
Н	2400	65.76	52.16	2.78	27.41	43.79	54	-10.21	AV

Report No.: DL-20240320070E

Polar	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Type
			ор	eration f	requency:2	2462			
V	2483.5	76.65	52.23	2.86	27.44	54.72	74	-19.28	PK
V	2483.5	65.63	52.23	2.86	27.44	43.7	54	-10.3	AV
V	2500	76.28	52.26	2.88	27.49	54.39	74	-19.61	PK
V	2500	65.16	52.26	2.88	27.49	43.27	54	-10.73	AV
Н	2483.5	76.17	52.23	2.86	27.44	54.24	74	-19.76	PK
Н	2483.5	65.65	52.23	2.86	27.44	43.72	54	-10.28	AV
Н	2500	76.73	52.26	2.88	27.49	54.84	74	-19.16	PK
Н	2500	65.67	52.26	2.88	27.49	43.78	54	-10.22	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 26 of 45

802.11n HT20

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(117 •)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	1960
			ор	eration f	requency:2	2412			
V	2390	76.16	52.12	2.73	27.38	54.15	74	-19.85	PK
V	2390	65.67	52.12	2.73	27.38	43.66	54	-10.34	AV
V	2400	77.16	52.16	2.78	27.41	55.19	74	-18.81	PK
V	2400	65.52	52.16	2.78	27.41	43.55	54	-10.45	AV
Н	2390	77.63	52.12	2.73	27.38	55.62	74	-18.38	PK
Н	2390	65.61	52.12	2.73	27.38	43.6	54	-10.4	AV
Н	2400	76.19	52.16	2.78	27.41	54.22	74	-19.78	PK
Н	2400	65.68	52.16	2.78	27.41	43.71	54	-10.29	AV

Report No.: DL-20240320070E

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
()	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	.,,,,,
			ор	eration f	requency:2	2462			
V	2483.5	77.66	52.23	2.86	27.44	55.73	74	-18.27	PK
V	2483.5	65.64	52.23	2.86	27.44	43.71	54	-10.29	AV
V	2500	76.86	52.26	2.88	27.49	54.97	74	-19.03	PK
V	2500	65.57	52.26	2.88	27.49	43.68	54	-10.32	AV
Н	2483.5	77.56	52.23	2.86	27.44	55.63	74	-18.37	PK
Н	2483.5	65.74	52.23	2.86	27.44	43.81	54	-10.19	AV
Н	2500	76.62	52.26	2.88	27.49	54.73	74	-19.27	PK
Н	2500	66.36	52.26	2.88	27.49	44.47	54	-9.53	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level Limit
- 2. If peak below the average limit, the average emission was no test.
- 3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 27 of 45

802.11n HT40

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector
(H/V)	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	Type
			ор	eration f	requency:2	2422			
V	2390	76.37	52.12	2.73	27.38	54.36	74	-19.64	PK
V	2390	65.36	52.12	2.73	27.38	43.35	54	-10.65	AV
V	2400	77.28	52.16	2.78	27.41	55.31	74	-18.69	PK
V	2400	65.23	52.16	2.78	27.41	43.26	54	-10.74	AV
Н	2390	77.24	52.12	2.73	27.38	55.23	74	-18.77	PK
Н	2390	65.28	52.12	2.73	27.38	43.27	54	-10.73	AV
Н	2400	76.59	52.16	2.78	27.41	54.62	74	-19.38	PK
Н	2400	65.84	52.16	2.78	27.41	43.87	54	-10.13	AV

Report No.: DL-20240320070E

Polar (H/V)	Frequency	Meter Reading	Pre- amplifier	Cable Loss	Antenna Factor	Emission Level	Limits	Margin	Detector Type
(/	(MHz)	(dBuV)	(dB)	(dB)	(dB/m)	(dBuV/m)	(dBuV/m)	(dB)	. 7 0
			ор	eration f	requency:2	2452			
V	2483.5	77.26	52.23	2.86	27.44	55.33	74	-18.67	PK
V	2483.5	65.17	52.23	2.86	27.44	43.24	54	-10.76	AV
V	2500	76.26	52.26	2.88	27.49	54.37	74	-19.63	PK
V	2500	65.34	52.26	2.88	27.49	43.45	54	-10.55	AV
Н	2483.5	77.36	52.23	2.86	27.44	55.43	74	-18.57	PK
Н	2483.5	65.17	52.23	2.86	27.44	43.24	54	-10.76	AV
Н	2500	76.25	52.26	2.88	27.49	54.36	74	-19.64	PK
Н	2500	66.59	52.26	2.88	27.49	44.7	54	-9.3	AV

Remark:

- 1. Emission Level = Meter Reading + Antenna Factor + Cable Loss Pre-amplifier, Margin= Emission Level - Limit
- 2. If peak below the average limit, the average emission was no test.3. The amplitude of spurious emissions which are attenuated by more than 20dB below the permissible value has no need to be reported.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 28 of 45

Shenzhen DL Testing Technology Co., Ltd.

3.4 CONDUCTED BAND EDGE EMISSION&CONDUCTED SPURIOUS EMISSIONS MEASUREMENT

Test Requirement:	FCC Part15 C Section 15.247 (d)
Test Method:	KDB558074 D0115.247 Meas Guidance v05r02

Report No.: DL-20240320070E

3.4.1 APPLICABLE STANDARD

in any 100 kHz bandwidth outside the frequency bands in which the spread spectrum intentional radiator in operating, the radio frequency power that is produced by the intentional radiator shall be at least 20dB below that in the 100kHz bandwidth within the band that contains the highest level of the desired power, In addition, radiated emissions which fall in the restricted bands, as defined in§15.205(a), must also comply with the radiated emission limits specified in15.209(a).

If the transmitter complies with the conducted power limits based on the use of RMS averaging over a time interval, as permitted under paragraph (b)(3) of this section, the attenuation required under this paragraph shall be 30 dB instead of 20 dB.

3.4.2 TEST PROCEDURE

Using the following spectrum analyzer setting: Set the RBW = 100KHz. Set the VBW = 300KHz. Sweep time = auto couple. Detector function = peak. Trace mode = max hold. Allow trace to fully stabilize.

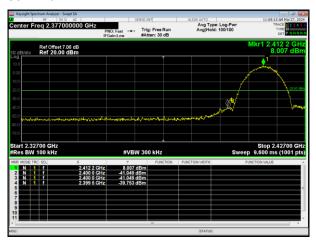
3.4.3 DEVIATION FROM STANDARD

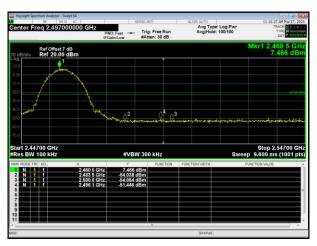
No deviation.

3.4.4 TEST SETUP

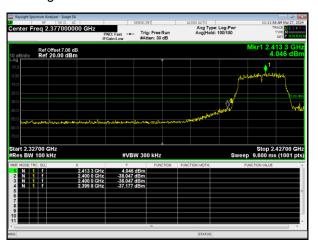
EUT	SPECTRUM
	ANALYZER

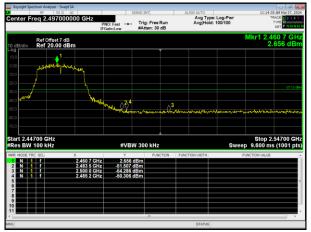
3.4.5 EUT OPERATION CONDITIONS

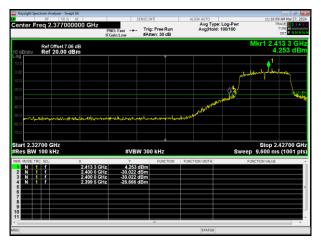

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.


3.4.6 TEST RESULTS

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 29 of 45

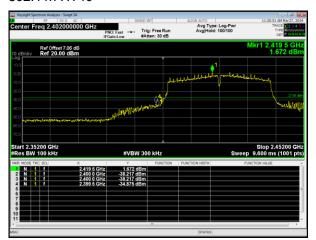



For Conducted 802.11b



802.11g

802.11n HT20



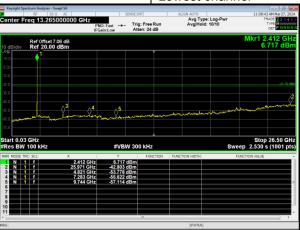


Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 30 of 45

802.11n HT40

Report No.: DL-20240320070E

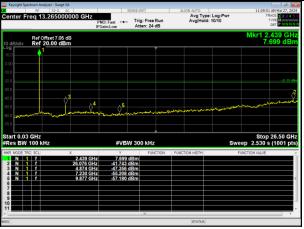
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 31 of 45


For Conducted

During the test, pre-scan the all modulation, and found the 802.11b mode which it is worse case.

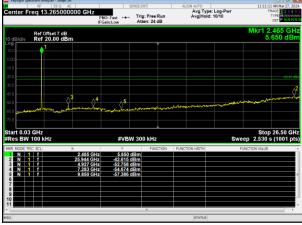
Test channel:

Lowest channel


Report No.: DL-20240320070E

0.03GHz~26.5GHz

Test channel:


Middle channel

0.03GHz~26.5GHz

Test channel:

Highest channel

0.03GHz~26.5GHz

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 32 of 45

4. AVERAGE OUTPUT POWER

4.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C							
Section	Test Item	Limit	Frequency Range (MHz)	Result			
15.247 (b)(3)	Average Output Power	1 watt or 30dBm	2400-2483.5	PASS			

Report No.: DL-20240320070E

4.1.1 TEST PROCEDURE

- a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below.
- b.Set span to at least 1.5 times the OBW.
- c.Set RBW = 1% to 5% of the OBW, not to exceed 1 MHz.
- d.Set VBW \geq [3 \times RBW].
- e.Number of points in sweep ≥ [2 × span / RBW]. (This gives bin-to-bin spacing ≤ RBW / 2, so that narrowband signals are not lost between frequency bins.)
- f.Sweep time = auto.
- g.Detector = RMS (i.e., power averaging), if available. Otherwise, use sample detector mode.
- h.If transmit duty cycle < 98%, use a sweep trigger with the level set to enable triggering only on full power pulses. The transmitter shall operate at the maximum power control level for the entire duration of every sweep. If the EUT transmits continuously (i.e., with no OFF intervals) or at duty cycle ≥ 98%, and if each transmission is entirely at the maximum power control level, then the trigger shall be set to "free run."
- i.Trace average at least 100 traces in power averaging (rms) mode.
- j.Compute power by integrating the spectrum across the OBW of the signal using the instrument's band power measurement function, with band limits set equal to the OBW band edges. If the instrument does not have a band power function, sum the spectrum levels (in power units) at intervals equal to the RBW extending across the entire OBW of the spectrum.

4.1.2 DEVIATION FROM STANDARD

No deviation.

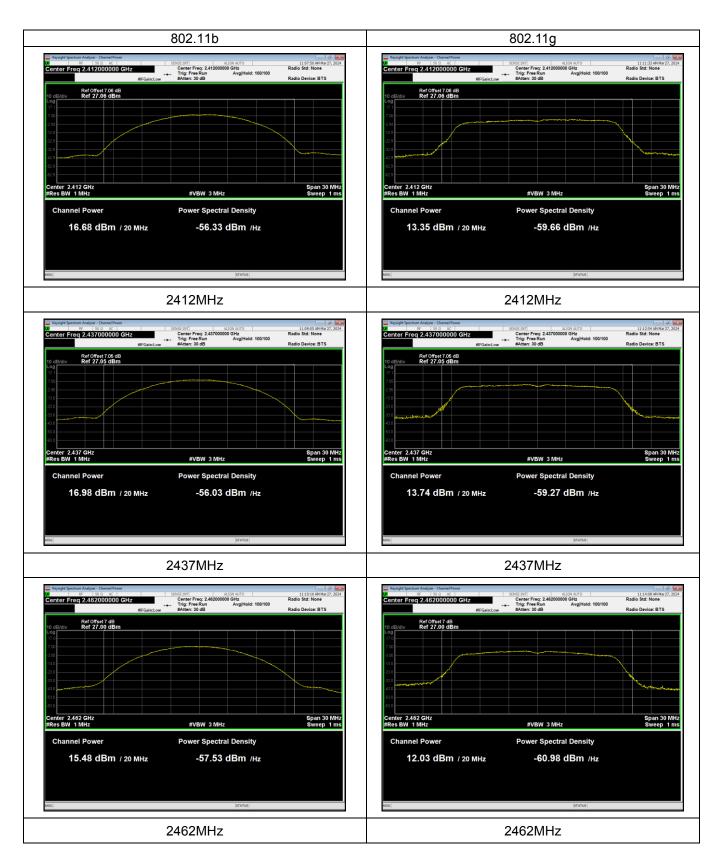
4.1.3 TEST SETUP

4.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 33 of 45

4.1.5 TEST RESULTS


Temperature:	25 ℃	Relative Humidity:	60%
Pressure:	1012 hPa	Test Voltage :	AC 120V/60Hz

Report No.: DL-20240320070E

Mode	Test Channel	Average Output Power (dBm)	LIMIT (dBm)
802.11b	Low	16.679	30.00
	Middle	16.985	30.00
	High	15.477	30.00
802.11g	Low	13.35	30.00
	Middle	13.742	30.00
	High	12.035	30.00
802.11n HT20	Low	14.315	30.00
	Middle	14.735	30.00
	High	12.998	30.00
802.11n HT40	Low	13.949	30.00
	Middle	13.701	30.00
	High	12.975	30.00

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 34 of 45

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 35 of 45

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 36 of 45

5. POWER SPECTRAL DENSITY TEST

5.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C						
Section	Test Item	Frequency Range (MHz)	Result			
15.247	Power Spectral Density	8 dBm (in any 3KHz)	2400-2483.5	PASS		

Report No.: DL-20240320070E

Spectrum Parameters	Setting
Attenuation	Auto
Span Frequency	= the frequency band of operation
RB	RBW ≥ 3kHz
VB	VBW ≥ 3RBW
Detector	power averaging (rms) or sample detector (when rms not available).
Trace	Max Hold
Sweep Time	Auto

5.1.1 TEST PROCEDURE

a. The EUT was directly connected to the spectrum analyzer and antenna output port as show in the block diagram below,

5.1.2 DEVIATION FROM STANDARD

No deviation.

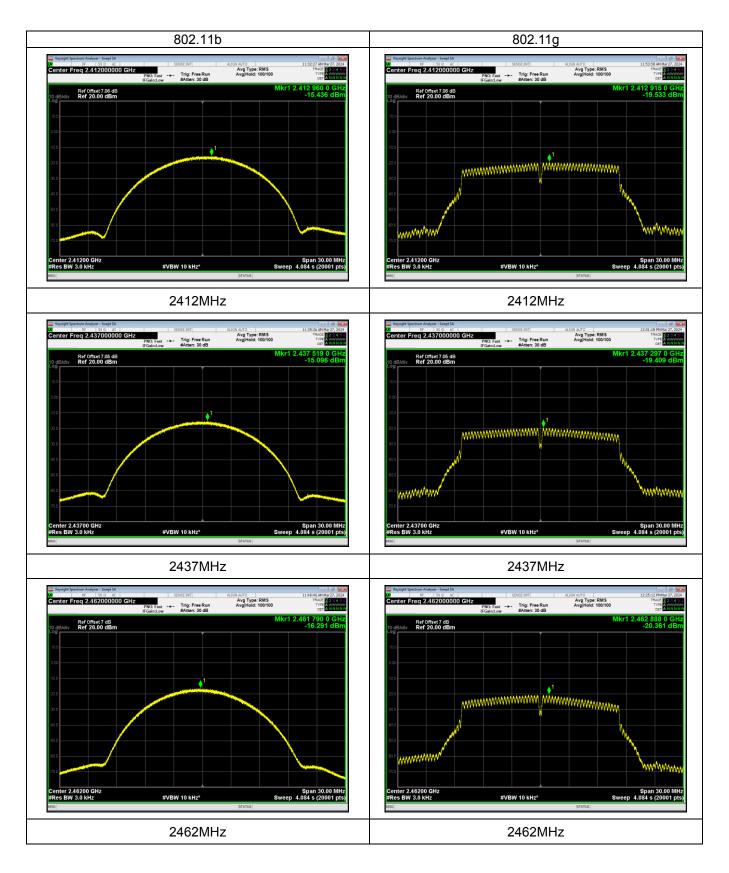
5.1.3 TEST SETUP

5.1.4 EUT OPERATION CONDITIONS

The EUT tested system was configured as the statements of 2.4 Unless otherwise a special operating condition is specified in the follows during the testing.

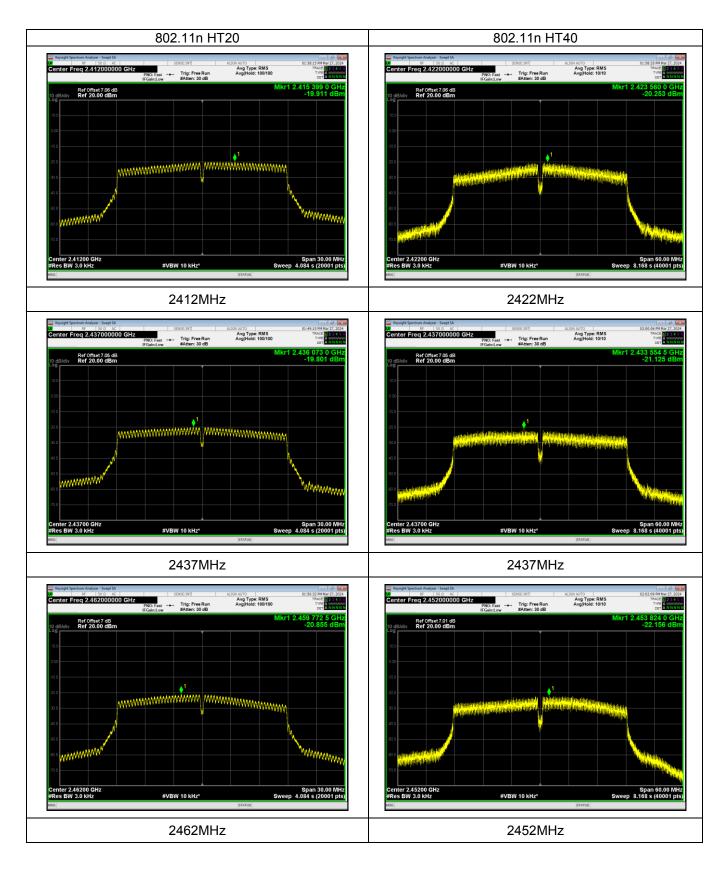
Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 37 of 45

Report No.: DL-20240320070E



5.1.5 TEST RESULTS

Mode	Test Channel	Reading Level (dBm/3kHz)	Limit (dBm/3kHz)	Result
	Low	-15.436	8	PASS
802.11b	Middle	-15.096	8	PASS
	High	-16.291	8	PASS
	Low	-19.533	8	PASS
802.11g	Middle	-19.409	8	PASS
	High	-20.361	8	PASS
	Low	-19.911	8	PASS
802.11n20	Middle	-19.801	8	PASS
	High	-20.855	8	PASS
	Low	-20.253	8	PASS
802.11n40	Middle	-21.125	8	PASS
	High	-22.156	8	PASS


Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 38 of 45

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 39 of 45

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 40 of 45

6. 6DB BANDWIDTH TEST

6.1 APPLIED PROCEDURES / LIMIT

FCC Part15 (15.247) , Subpart C					
Section Test Item Limit Frequency Range(MHz) Result					
15.247(a)(2)	Bandwidth	>= 500KHz (6dB bandwidth)	2400-2483.5	PASS	

Report No.: DL-20240320070E

6.1.1 TEST PROCEDURE

- 1. Set RBW = 100 kHz.
- 2. Set the video bandwidth (VBW) ≥RBW.
- 3. Detector = Peak.
- 4. Trace mode = max hold.
- 5. Sweep = auto couple.
- 6. Allow the trace to stabilize.
- 7. Measure the maximum width of the emission that is constrained by the frequencies associated with the two outermost amplitude points (upper and lower frequencies) that are attenuated by 20 dB relative to the maximum level measured in the fundamental emission.

6.1.2 DEVIATION FROM STANDARD

No deviation.

6.1.3 TEST SETUP

6.1.4 EUT OPERATION CONDITIONS

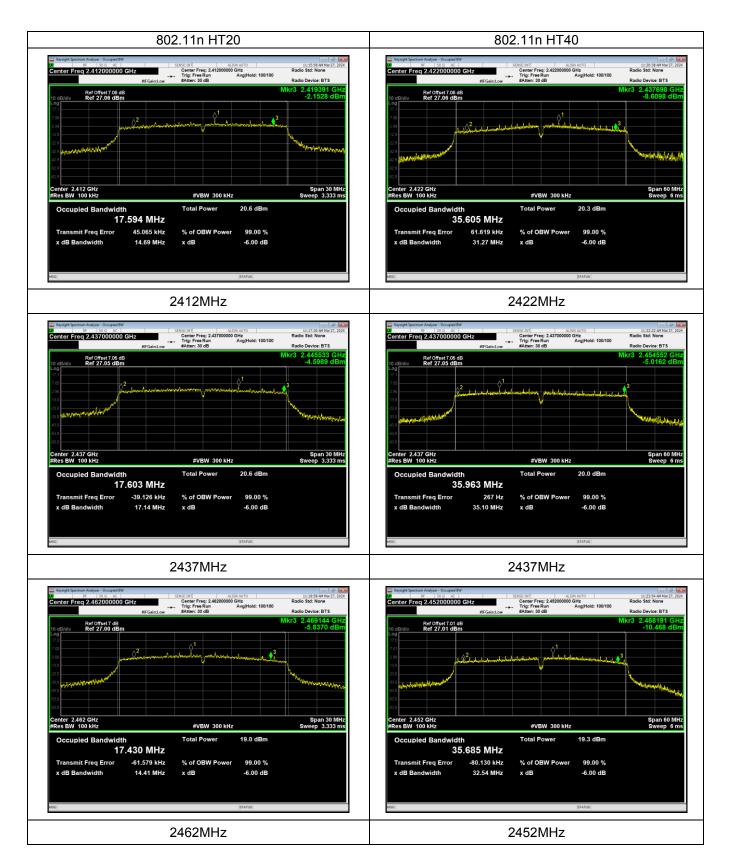
The EUT tested system was configured as the statements of 2.3 Unless otherwise a special operating condition is specified in the follows during the testing.

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 41 of 45

6.1.5 TEST RESULTS

	Test Channel	6dB Bandwidth (MHz)	Limit (MHz)	Result
	Low	8.412	0.5	Pass
802.11b	Middle	8.645	0.5	Pass
	High	7.14	0.5	Pass
	Low	15.754	0.5	Pass
802.11g	Middle	15.908	0.5	Pass
	High	15.315	0.5	Pass
	Low	14.691	0.5	Pass
802.11n HT20	Middle	17.144	0.5	Pass
	High	14.411	0.5	Pass
	Low	31.274	0.5	Pass
802.11n HT40	Middle	35.104	0.5	Pass
	High	32.542	0.5	Pass

Report No.: DL-20240320070E


Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 42 of 45

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 43 of 45

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 44 of 45

7. ANTENNA REQUIREMENT

7.1 STANDARD REQUIREMENT

15.203 requirement: For intentional device, according to 15.203: an intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device.

Report No.: DL-20240320070E

7.2 EUT ANTENNA

The EUT antenna is Internal Antenna, It comply with the standard requirement.

8. TEST SEUUP PHOTO

Reference to the appendix I for details.

9. EUT PHOTO

Reference to the appendix II for details.

**** END OF REPORT ****

Test Report Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com Page 45 of 45

Certificate of Conformity

Certificate Number: DL-20240320004C

Applicant: JM Zengge Lighting Co., Ltd

5th Floor, Building 1, No. 19 Gaoxin East Road, jianghai District, jiangmen City

Manufacturer: JM Zengge Lighting Co., Ltd

5th Floor, Building 1, No. 19 Gaoxin East Road, jianghai District, jiangmen City

Product: Smart led bulb

Model No.: ZJ-WBL4H-RGBWW-SM

ZJ-WBL4L-RGBWW-SM, ZJ-BWBL1H-RGBWW-B22-1P, ZJ-WBL3L-RGBWW-SM,

ZJ-WBL3H-RGBWW-SM, ZJ-BWBOL-RGBWW, ZJ-BWBOH-RGBWW, ZJ-WBOL-RGBWW-SM,

ZJ-BWBL1L-RGBWW-1PP, ZJ-BWBL1H-RGBWW-1P, ZJ-BBL3L-RGBWW-Z,

ZJ-BBL3H-RGBWW-Z, ZJ-YBBL3L-RGBWW, ZJ-YBBL3H-RGBWW, ZJ-YBBL3H-CCT,

ZJ-YBBL3L-CCT, ZJ-YMBL3L-CCT-8S, ZJ-YMBL3H-CCT, ZJ-TMBL3L-RGBWW,

ZJ-TMBL3H-RGBWW, ZJ-BWBL1-RGBWW

Test Standard: IEC 62321-1:2013; IEC 62321-3-1:2013; IEC 62321-4:2013+A1:2017;

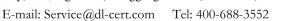
IEC 62321-5:2013; IEC 62321-6:2015; IEC 62321-7-1:2015;

IEC 62321-7-2:2017; IEC 62321-8:2017

The EUT described above has been consolidated by us and found in compliance with the council RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

The certificate applies to the tested sample above mentioned only and shall not imply an assessment of the whole production, It is only valid in connection with the test report number:DL-20240320004R.

RoHS



This certificate of conformity is based on a single evaluation of the submitted sample(s) of the above mentioned product. It does not imply an assessment of the whole product and relevant. Without the written approval, It is not permitted to use the test lab's logo.

Web: www.dl-cert.com

101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1 Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China

TEST REPORT

Applicant: JM Zengge Lighting Co., Ltd

Address: 5th Floor, Building 1, No. 19 Gaoxin East Road, jianghai District, jiangmen City

Manufacturer: JM Zengge Lighting Co., Ltd

Address: 5th Floor, Building 1, No. 19 Gaoxin East Road, jianghai District, jiangmen City

Product Name Smart led bulb

Trade Mark: N/A

Model Number: ZJ-WBL4H-RGBWW-SM

Series Model No.: ZJ-WBL4L-RGBWW-SM, ZJ-BWBL1H-RGBWW-B22-1P, ZJ-WBL3L-RGBWW-SM,

ZJ-WBL3H-RGBWW-SM, ZJ-BWBOL-RGBWW, ZJ-BWBOH-RGBWW,

ZJ-WBOL-RGBWW-SM, ZJ-BWBL1L-RGBWW-1PP, ZJ-BWBL1H-RGBWW-1P,

ZJ-BBL3L-RGBWW-Z, ZJ-BBL3H-RGBWW-Z, ZJ-YBBL3L-RGBWW,

ZJ-YBBL3H-RGBWW, ZJ-YBBL3H-CCT, ZJ-YBBL3L-CCT, ZJ-YMBL3L-CCT-8S,

ZJ-YMBL3H-CCT, ZJ-TMBL3L-RGBWW, ZJ-TMBL3H-RGBWW, ZJ-BWBL1-RGBWW

Date of Receipt: Mar. 20, 2024

Date of Test: Mar. 20, 2024 - Mar. 28, 2024

Date of Report: Mar. 28, 2024

With reference to RoHS Directive (EU) 2015/863 amending 2011/65/EU. Test Requested:

Test Standard: Please refer to next page(s).

Test Results: Please refer to next page(s).

Conclusion:

As requested by applicant, the submitted sample was tested which is listed as specimen description in the following page, the results of Lead, Mercury, Cadmium, Hexavalent chromium, Polybrominated biphenyls (PBBs), Polybrominated diphenyl ethers (PBDEs) and Phthalates such as Bis(2-ethylhexyl) phthalate (DEHP), Butyl benzyl phthalate (BBP), Dibutyl phthalate (DBP), and Diisobutyl phthalate (DIBP) comply with the limits as set by RoHS Directive (EU) 2015/863 amending Annex II to Directive 2011/65/EU.

Ava liu Prepared (Engineer):

Approved (Manager): Jade Yang

This test report is based on a single evaluation of one sample of above mentioned products. It is not permitted to be duplicated in extracts without written approval of Shenzhen DL Testing Technology Co., Ltd.

> 101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1 Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com

address:

Version

Version No.	Date	Description
00	Mar. 28, 2024	Original

Remark:

- (1) There are the results on total Br while test items on restricted substances are PBBs and PBDEs. There are the results on total Cr while test items on restricted substances Cr(VI)
- (2) Results are obtained by EDXRF for primary screening, and further chemical testing by ICP-OES (for Cd, Pb, Hg),UV-Vis (for Cr(VI) and GC-MS (for PBBs,PBDEs) is recommended to be performed, if the concentration exceeds the below warning value according to IEC 62321-3-1:2013 (unit:mg/kg)

Element	Polymer Materials	Metal Materials	Composite Materials
Cd	BL≤70-3σ <x<130+3σ≤ol< td=""><td>BL≤70-3σ<x<130+3σ≤ol< td=""><td>BL≤50-3σ<x<150+3σ≤ol< td=""></x<150+3σ≤ol<></td></x<130+3σ≤ol<></td></x<130+3σ≤ol<>	BL≤70-3σ <x<130+3σ≤ol< td=""><td>BL≤50-3σ<x<150+3σ≤ol< td=""></x<150+3σ≤ol<></td></x<130+3σ≤ol<>	BL≤50-3σ <x<150+3σ≤ol< td=""></x<150+3σ≤ol<>
Pb	BL≤700-3σ <x<1300+3σ≤ol< td=""><td>BL≤700-3σ<x<1300+3σ≤ol< td=""><td>BL≤500-3σ<x<1500+3σ≤ol< td=""></x<1500+3σ≤ol<></td></x<1300+3σ≤ol<></td></x<1300+3σ≤ol<>	BL≤700-3σ <x<1300+3σ≤ol< td=""><td>BL≤500-3σ<x<1500+3σ≤ol< td=""></x<1500+3σ≤ol<></td></x<1300+3σ≤ol<>	BL≤500-3σ <x<1500+3σ≤ol< td=""></x<1500+3σ≤ol<>
Hg	BL≤700-3σ <x<1300+3σ≤ol< td=""><td>BL≤700-3σ<x<1300+3σ≤ol< td=""><td>BL≤500-3σ<x<1500+3σ≤ol< td=""></x<1500+3σ≤ol<></td></x<1300+3σ≤ol<></td></x<1300+3σ≤ol<>	BL≤700-3σ <x<1300+3σ≤ol< td=""><td>BL≤500-3σ<x<1500+3σ≤ol< td=""></x<1500+3σ≤ol<></td></x<1300+3σ≤ol<>	BL≤500-3σ <x<1500+3σ≤ol< td=""></x<1500+3σ≤ol<>
Br	BL≤300-3σ <x< td=""><td>· · · · · · · · · · · · · · · · · · ·</td><td>BL≤250-3σ<x< td=""></x<></td></x<>	· · · · · · · · · · · · · · · · · · ·	BL≤250-3σ <x< td=""></x<>
Cr	BL≤700-3σ <x< td=""><td>BL≤700-3σ<x< td=""><td>BL≤500-3σ<x< td=""></x<></td></x<></td></x<>	BL≤700-3σ <x< td=""><td>BL≤500-3σ<x< td=""></x<></td></x<>	BL≤500-3σ <x< td=""></x<>

- (a) BL=Below Limit, OL=Over Limit, X=Inconclusive, LOD=Limit of Detection,---=Not regulated.
- (b) The XRF screening test for RoHS elements- the reading may be different to actual content in the sample be of non-uniformity composition
- (3) Chemical Method
- ① With reference to IEC 62321-5:2013, determination of Cadmium, Lead by ICP-OES.
- With reference to IEC 62321-4:2013+AMD1:2017 CSV, determination of Mercury by ICP-OES.
- ③ With reference to IEC 62321-7-1:2015 ★ IEC 62321-7-2:2017, determination of Hexavalent Chromium by Colorimetric method using UV-Vis.
- With reference to IEC 62321-6:2015, determination of PBBs and PBDEs by GC-MS.
- (5) With reference to IEC 62321-8:2017, determination of Phthalates by GC-MS.
- (4) (a) mg/kg=0.0001%,MDL=MDL=Method Detection Limit,(c)ND=Not Detected(<MDL),
 - ---=Not Regulated
 - (b) Unit and MDL in wet chemical test

Test Item	Pb	Cd	Hg	DBP	BBP	DEHP	DIBP
Unit	mg/kg						
MDL	10	10	10	100	100	100	100

The MDL for single compound of PBBs and PBDEs is 100 mg/kg

MDL of Cr(VI) for polymer and composite sample is 10 mg/kg

MDL of Cr(VI) for metal sample is 0.10ug/cm²

- (c) ▼=Metal sample
- a. The sample is negative for Cr⁶⁺ if Cr⁶⁺ is N.D. (below the limit 0.10ug/cm²). The coating is considered a non Cr⁶⁺
- b. The sample positive for Cr⁶⁺ if the Cr⁶⁺ concentration is greater than 0.13ug/cm². The sample coating is considered to contain Cr6+.
- c.The result between 0.10ug/cm² and 0.13ug/cm² is considered to be inconclusive unavoidable coating variations may influence the determination.

Note: These model differences are designed for different customers. The material and size are the same, All tests were performed on ZJ-WBL4H-RGBWW-SM.

> 101-201, Comprehensive Building, Tongzhou Electronics Longgang Factory Area, No.1 Baolong Fifth Road, Baolong Community, Baolong Street, Longgang District, Shenzhen, China Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com

Tested Sample/Part Description:

Specime	en No.	Component Description(s)	Style
	A01	Silver metal	-
	A02	Green plastic	<u>-</u>
	A03	Silver metal	COL
	A04	White plastic	- ceit
	A05	Translucent plastic	Q' (3
	A06	Silver metal	- OV:
	A07		x <
	A08	Patch resistance	,e` <u>-</u>
	A09	White plastic	. €®` ×
	A10	Silver metal pin	O, - Co,
	A11	Patch LED	-O ₂
	A12	Sheet metal with white coating	- O ^V
	A13	Grey ceramic resistor	- O. T.
	A14	IC.	
	A15	Capacitive gray plastic casing	0,0
	A16	Capacitive silver metal	- 0/:
	A17		- ×
	A18	Black diode	,e ^r -
	A19	White plastic	Col
	A20	Silver metal pin	or- 'Cell
	A21	White PCB	-0
	A22	Crystal oscillator	· - O)
	A23		-01
	A24	Capacitive silver metal	<u>, </u>
	A25	Inductance black ceramics	
	A26	Inductive yellow metal conductor	\ <u></u>
	A27	White PCB	<u>-</u>
	A28	Silver solder	oit -
	A29	White rubber wire leather	- Cert
	A30	Red rubber wire leather	or cer
	A31	Silver wire	-OV.

Test Results:

The results of XRF screening and chemical test (Unit: mg/kg)

Part No.	of XRF screening and chemic Element	X-ray Screening	Results of chemical test	Conclusion on RoHS EU	Sample Resubmitted
× (Pb	BL	O	V ,	× 0,
	Cd	BL	OV.		Co.
COX	Hg	BL of	<u></u>	x 0	C.O.
	Cr(Cr ⁶⁺)	BL	O	Col	alt alt
404	PBBs	<u>~</u> , {	· ×		,00
A01	PBDEs	.x O	C [©]	Pass	OM CO
0	DIBP	9* 3c 	0\' - e ^t	Co	x OV
	DBP	GO	<u> </u>	O C	Sir a
o'X	BBP	ot	, ,C	× 0\'	- OK
, ,	DEHP			· OCC	
ČO,	Pb	BL C	· ov	-01	, , , , ,
0) (8	Cd	BLO	V	X X	Or Coll
	Hg	BL		\mathcal{O}_{χ}	01/0
	Cr(Cr ⁶⁺)	- BL	x	Or Col	
· <	PBBs	BĽ	~_```````````	- 07.	-0 ¹ / ₂
A02	PBDEs	BL	<u>\rightarrow\frac{\rightarrow}{2} \ \ \rightarrow\frac{\rightarrow}{2} \ \rig</u>	Pass	
Cel	DIBP	O, Co,	N.D.	S. O.	Co.
COL	DBP	<u>⇔</u> ′	N.D.	,C°	Or Coll
	BBP		N.D.	Co	
	DEHP	· >	N.D.	Or con	,00
\bigcirc	C Pb	BL	OV GOVE		,
×	Cd	BL	0 cert	V , , C	x o
e	Hg	BL	 ->	Y O'	Co
- O'X	Cr(Cr ⁶⁺)	BL	<u></u>) x <	N COL
	PBBs		~ O	Co	
A03	PBDEs		,c° ,	Pass	7 7 00
\Diamond	DIBP	× 🛇	<u> </u>		Q C
, d	DBP	- 	01 er	, Con	× OV
V	BBP	<u> </u>			CONTRACTOR
-01	DEHP	OV ot	<u></u>	× 0\	- O'T
, X	Pb C	BL	× 0	COC	
Č _® ,	Cd	BL)°	- 01	, Co.
0	Hg	BL O	GOV	~ X	0, 00
	Cr(Cr ⁶⁺)	BL	ovi -ex	D. Co.	× OV
	PBBs	BL	× 55 ×	O C	50
A04	PBDEs	BL	O Co.	Pass	
X	DIBP	<u>,</u>	N.D.	er.	CO &
Col	DBP	Or Ce	N.D.	O.K.	, Co,
ov -e	BBP		N.D.	So x	Or con
			U IN.D.	AV	

address:

Part No.	Element	X-ray Screening	Results of chemical test	Conclusion on RoHS EU	Sample Resubmitted
	Pb	BL	V 200	O. Co.	O ^V
	Cd Cd	BL	, C x	Oli cer	
<u>.</u>	Hg	BL	O,Co,		
χ.	Cr(Cr ⁶⁺)	BL	<u> </u>		C X
000	PBBs	BL CO	0	- 0 ¹	Co.
A05	PBDEs	ϕ_{λ}	N.D.	Pass	Or Col
	DIBP	ovi	N.D.	Č _© ,	
	DBP	· `	N.D.	Or Coll	
\Diamond_{\star}	BBP	- 05	N.D.	01/0	
×	DEHP	· · · · ·	N.D.	, O	× 0
9	Pb	BL	× -0\	- 6 ¹	. ,O®*
Cert	Cd	ØBL 6		× <) Cert
OV -0	Hg	BL	O*	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
V ~\.	Cr(Cr ⁶⁺)	BL	,	Dr Cell	
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	PBBs	- e th	, C <u></u>	OY cert	
A06	PBDEs	_ _ ~	O C Sec.	Pass	
×	DIBP	, <u>, , , , , , , , , , , , , , , , , , </u>	OV ce		C X.
COC	DBP	0 Cer		at O	
, oth	BBP	S	· o · · · ·	Co x.	
	DEHP	~) <u> </u>	Col	
	Pb O	BL	~~ ×	Or cert	
\Diamond_{\wedge}	Cd	BL		0)-	, C
X	Hg	BL ×	0 con	V C	,
S,	Cr(Cr ⁶⁺)	BL	· -0	. ot	
C O'C	PBBs	BL S	·	۷. ۲	S COL
A07	PBDEs	BL	O*	Pass	OV: - oit
V	X DIBP		N.D.	O' COL	
\Diamond	DBP	_o^ °	N.D.	OV' - eri	
,	BBP	_ ~	N.D.		
	DEHP	<u>`</u> ,	N.D.	*	Co. x
CO	Pb	BLO		, O	OST
, ox	Cd	BL	· · · · · · · · · · · · · · · · · · ·	Co. X	
	Hg	BL	, , , , , , , , , , , , , , , , , , ,	Cert	
	Cr(Cr ⁶⁺)	BL	, , , , , , , , , , , , , , , , , , ,	OV COL	
0	PBBs	<u> </u>			,
A08	PBDEs	,C° x	OV 0K	Pass	× 1 0
OS.	DIBP			,	
- ex	DBP	0 - e	<u></u>	×	e ot
V.	BBP		~ O	Cer	
) C.S	DEHP	\Diamond		N A	

Part No.	Element	X-ray Screening	Results of chemical test	Conclusion on RoHS EU	Sample Resubmitted
	Pb C	BL	, , ,	D. Co.	0
	Cd C	BL	, , , , , , , , , , , , , , , , , , ,	Oli cer	
<u>.</u>	Hg	BL	O, Co,		
χ.	Cr(Cr ⁶⁺)	BL	<u> </u>		
0	PBBs	BL C	0	0°	Co.
A09	PBDEs	BL	-e ⁻	Pass	Or Col
	DIBP	ov	N.D.	Č _© ,	
	DBP	· `	N.D.	Or Coll	
\Diamond_{\star}	BBP	- <u> </u>	Ŋ.D.	07,	
X	DEHP	, ×	N.D.	V ()	
,0)	Pb	BL	× -0\	- 6 ¹	, Ç
Cer	Cd	BL C		× <	
o` - a	Hg	BL	-o ^x	Co. ×	
V	Cr(Cr ⁶⁺)	BL	, O' , X	Dr Cell	
\bigcirc	PBBs	- e st	ζ <u></u> ×	O' ceri	ν, ,
A10	PBDEs	_ _ ~	OrColu	Pass	
Ų.	DIBP	<u>``</u>	<u>~</u>		
COL	DBP	0 Cer	~	× 0	
-01	BBP	<u> </u>	- e ^x	Co	
	DEHP			Colt	
	Pb O	BL	x	OV Ger	7,00
\Diamond_{\wedge}	Cd Cd	BL		0),	
X	Hg	BL X	0 cer	V C	
Ø`	Cr(Cr ⁶⁺)	BL	. .		
c ex	PBBs	BL 6	°	2 <	S cert
A11	PBDEs	BL	- ox O*	Pass	OV: - ert
V	DIBP		N.D.	O' COL	
\Diamond_{\wedge}	DBP	~ · · ·	Ñ.D.	OV' - et	
	BBP	_ 	N.D.	V	
	DEHP	`Q <u>~_</u>	N.D.	\	
CO	Pb	BLO	~	. O	CONTRACTOR
-0,1	Cd	BL	· o* \(\)	Co.	
	Hg C	BL	× 🗘	Cert	
O* }	Cr(Cr ⁶⁺)	BL	, Co ×	Or -oth	
OV	PBBs	×	Or Cal		
A12	PBDEs	, ×	01 et	Pass	
e C	DIBP	Cor C		7. Or	
-01	DBP	0 -0	<u>\sqrt{2}</u> \qqrt{2}	×	
. C	BBP		~ O	Cer	
) ~ c.e	DEHP	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Co.		

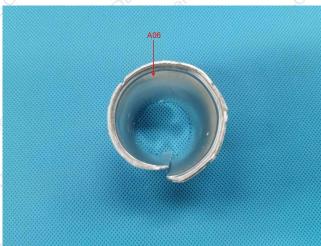
Part No.	Element	X-ray	Results of	Conclusion	Sample
- C	Pb	Screening BL	chemical test	on RoHS EU	Resubmitted
0,	Cd	BL	Cox		
\(\frac{1}{2}\)			OV - OK	, Co	
	Hg	BL			
-01	Cr(Cr ⁶⁺)	BL	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	× 0	
A13	PBBs		~ O	Pass	
Ò _{o,} —	PBDEs	- 	-5°'	- ex	
0	DIBP	~ O	GOV		
	DBP	<u>,</u>	OL' -et	Q, Co,	
_	BBP	- Ce ^C		Q (S	
Y. O.	DEHP	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	Q* _C O`		-01
×	Pb	BL	× -0),		
Co,	Cd	BL	·		
	Hg	BL	V	2	
	Cr(Cr ⁶⁺)	BL	, , ,	O, Co,	
A14	PBBs	OL	N.D.	Dans (e)	1
A14	PBDEs	OL	N.D.	Pass	Six Or
χ. <	DIBP	<u> </u>	N.D.		
CON	DBP	O, Co,	N.D.	E.K. O'	
ceit	BBP	<u>→</u>	N.D.		
	DEHP O	~	N.D.	Co	
7 0	Pb C	BL	x	Or Cel	V
O _V	C Cd	BL	O, [©] 0,		
x. 0	Hg	BL	OV cert	VO	
	Cr(Cr ⁶⁺)	BL			
coit -	PBBs	BL C	<u></u> ,	Y x	
A15	PBDEs	BL	O	Pass	
	DIBP	۱ ۱	N.D.	or cet	
O _V	DBP	O	N.D.	OV. OK	
O V	BBP	P _x	N.D.		
	DEHP	<u></u>	N.D.		
- O	Pb	BLO		X O	COL
, , , , , , , , , , , , , , , , , , ,	Cd	BL	O	Ce	
, Co x	Hg	BL	× ()	COL	
O, Per	Cr(Cr ⁶⁺)	BL	Co.	at at	
	PBBs	BL	Or COL	V	
A16	/X	- Co		Pass	
,	PBDEs	er l	· · ·	x O	
× -	DIBP		<u> </u>	3	
,Co,	DBP	- V , C		co ^k	
× (e)	BBP			\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	

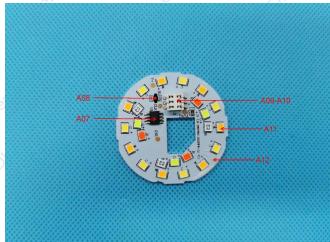
Part No.	Element	X-ray Screening	Results of chemical test	Conclusion on RoHS EU	Sample Resubmitted
	Pb	BL	V .*	O. Co.	0\
	Cd Cd	BL	<u> </u>	Or con	
<u>.</u>	Hg	BL	OrCor		C. C.
χ.	Cr(Cr ⁶⁺)	BL	o∑ ce		
0	PBBs	BL CO			Co.
A17	PBDEs	BL	-e ⁻	Pass	Or Col
	DIBP	ov	N.D.), Co,	OV - et
	DBP	· `	N.D.X	Or Coll	~ .C-
\Diamond_{\wedge}	BBP	-01-	Ŋ.D.	0	
χ.	DEHP	, ×	N.D.	, O	(Q 3)
,0)	Pb	BL	× -0 ¹	- O'E	
cert	Cd	BL C			Dr Coll
0	Hg	BL	- o'X O'	Co. X	Oli cost
V	Cr(Cr ⁶⁺)	BL	, , , , , , , , , , , , , , , , , , , 	Or Call	
O*	PBBs	BL	, , , , , , , , , , , , , , , , , , ,	OY cert	, Ç
A18	PBDEs	BL	O Col	Pass	
	DIBP	, C ₀ ,	N.D.		Ç ₀ , × <
Cert	DBP	O COL	N.D.	10 N	Cert
- 0 ¹	BBP	<u>→</u>	N.D.	Co. x	OV' COR
	DEHP		N.D.	Coll	
ð.	, Pb O	BL	x	O' Get	7,00
\Diamond_{\wedge}	Cd	BL			, C
χ.	Hg	BL X	Or Col	V C	. O
Ø`	Cr(Cr ⁶⁺)	BL	 0\'		Ò,
COL	PBBs	BL 6	·	<u> </u>	S cer
A19	PBDEs	BL	- ox O*	Pass	OV: - oit
	DIBP		N.D.	Or con	V
\Diamond_{\wedge}	DBP	_o^ O	Ñ.D.	OV - of	Ó, Č
	BBP	 ~	N.D.		X Or
	DEHP	<u> </u>	Ŋ.Ď.		
Cer	Pb	BLO	3	× 0	Cocc
-01	Cd	BL	· · · · · · · · · · · · · · · · · · ·	Co. x	Oli cert
	Hg	BL) <u></u>	Cert	
Ο', \	Cr(Cr ⁶⁺)	BL	x	OL COR	O. Co.
0	PBBs	<u> </u>	O' GETT		, C
A20	PBDEs	,Cox	Or - cet	Pass	
er	DIBP	Cor C		7. O)	Cert
-01	DBP	0 -0		, x	N' cet
J. 6	BBP		- A	Cor.	
) ~ (e	DEHP		Co		O. Co.

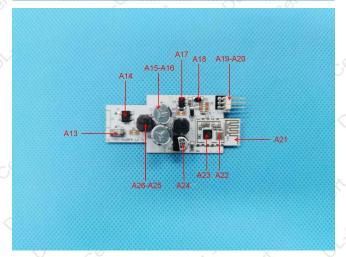
Part No.	Element	X-ray Screening	Results of chemical test	Conclusion on RoHS EU	Sample Resubmitted
	Pb	BL	, , ,	D. Co.	OV
	Cd C	BL	, , , , , , , , , , , , , , , , , , ,	Oli cer	
× <	Hg	BL	O,Co,		
X	Cr(Cr ⁶⁺)	BL	<u> </u>		
Color	PBBs	OL CO	N.D.	0°	Co.
A21	PBDEs	OL	N.D.	Pass	Or Col
	DIBP	· 8	N.D.	Č _© ,	
	DBP O	· `	N.D.	Or Coll	
\Diamond_{\wedge}	○ BBP	- o ^{\(\frac{1}{2}\)}	Ŋ.D.	01/0	
X	DEHP	x	N.D.	V O	K 0
, ,	Pb	BL	× -0\	- 6 ¹	, Ç
COL	Cd	BL G		× <) Cert
0/	Hg	BL	-o ^x	Co. ×	
V ~\(\(\)	Cr(Cr ⁶⁺)	BL	, O' , X	Or Cell	
O*	PBBs	- e ^x	ζ <u></u> ×	O' ceri	ν, ,
A22	PBDEs	_ _ &	O C O C C	Pass	
,	DIBP	,C <u>~</u>	OY ce		Co. x
Col	DBP	O COL	01/	at O	
/ coil	BBP	<u>~</u>	-e ^x	, C × .	
	DEHP			Col	
<u> </u>	, Pb O	BL	~~ ×	OV Cert	7,00
\Diamond_{r}	C Cd	BL	O, Go,	0)-	,
X	Hg	BL X	Or Cor	, C.	A O
Ø <u>`</u>	Cr(Cr ⁶⁺)	BL	·	.ex	
COL	PBBs	♥BL €	·	_ <u>&</u> <	
A23	PBDEs	BL	-e ^x	Pass	OV - oit
V	DIBP O		N.D.	O' COL	
\Diamond_{\star}	DBP	_&* V	N.D.	Oli cert	
, d	BBP	 _	N.D.		
	DEHP	, C <u></u>	N.D.		
Cert	Pb	BLO		,X. O	CONT
, ot	Cd	BL	· o · · ·	C ^o	
	Hg O	BL) <u>,</u> , ,	Cox	
V .	Cr(Cr ⁶⁺)	BL	x	Or con	
	PBBs	<u> </u>	O, Esp		, O
A24	PBDEs	, C x	DY COX	Pass	
O	DIBP		 >	,	
COX	DBP	0 cë	<u> </u>		N' COL
V .	BBP		O	Cox	
, Ce	DEHP		,00	or cer	

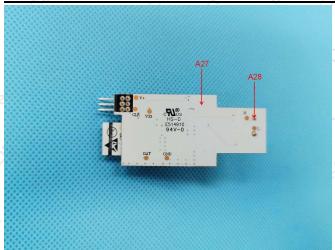
Part No.	Element	X-ray Screening	Results of chemical test	Conclusion on RoHS EU	Sample Resubmitted
	Pb C	BL	× **	O, Co,	OV
	Cd C	BL Y	, C	Or cer	
× <	Hg	BL	~.co		
X	Cr(Cr ⁶⁺)	BL	OY ce		
000	PBBs	D, Co,			Ç ^o
A25	PBDEs	<u>⇔</u> `	· ø · · · ·	Pass	Or Col
	DIBP	oʻ	- 0 ¹ /	Ò,	
×	DBP O	· `		Or Coll	
\Diamond_{\star}	BBP	- O 		OV:	
× .	DEHP	··· ×	Or Col	× , , , ,	
) ×	Pb	BL	× -0×	O. C.	, , o
Col	Cd	BL 6			
01/	Hg	BL		S.C.	
	Cr(Cr ⁶⁺)	BL	, , ,	O, Cer	
400	PBBs	- 0	, O <u></u>	Open con	,,,,,,
A26	PBDEs	<u> </u>	O Co	Pass	
X.	DIBP	<u> </u>	<u> </u>		
Col	DBP	O, Co,		CK O'	
COL	BBP	<u></u> →	· o'		
	DEHP	· · · ·) O	Co,	
	Pb O	BL	~~ ×	Or Col	
\Diamond_{r}	Cd	BL		0),	
X	Hg	BL	0 cer	~	
,°`	Cr(Cr ⁶⁺)	BL	· -0 >	ex.	
607	PBBs	OL G	N.D.	<u> </u>	St Cert
A27	PBDEs	OL	N.D.	Pass	Oli ceit
	DIBP	`	N.D.	D) Cert	
♦.	DBP O	- @ ⁽⁾ \	N.D.	Or con	
	BBP	- -	N.D.		
×	DEHP	, C <u></u>	N.D.		
Cer	Pb	BLO		A O	Co
COL	Cd	BL	e \	CO X	
	Hg C	BL	, O	Co	
Y	Cr(Cr ⁶⁺)	BL	~~ x	Or con	
400	PBBs	<u></u>		50,0	Y. O.
A28	PBDEs	, C x	OV ceit	Pass	
0	DIBP	C ell	 ->		
cert	DBP	OV ce		× <	
	BBP		- OV	Cox	
V , C	DEHP		, C ,	or cert	

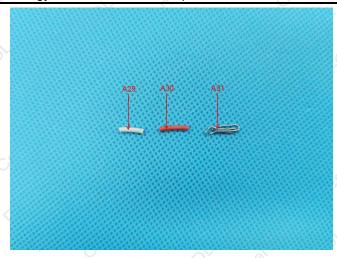
Report No.:DL-20240320004R Shenzhen DL Testing Technology Co., Ltd.


Part No.	Element	X-ray Screening	Results of chemical test	Conclusion on RoHS EU	Sample Resubmitted
	Pb C	BL	V .*	D. Co.	01/
	Cd C	BL	, , , , , , , , , , , , , , , , , , ,	Or Ger	
	/ Hg	BL	O,		-01
×	Cr(Cr ⁶⁺)	BL	<u>⇔</u>		O .×.
O 400	PBBs	BL CO	~	Door Door	Co.
A29	PBDEs	Θ_{λ}	N.D.	Pass	Or Coll
01/0	DIBP	· ov	N.D.) Co.	OV' - eri
	DBP		N.D.	Or Cell	
\Diamond	BBP	- ei	N.D.	0	
X.	DEHP	×	N.D.	, O	
-)° ×	Pb	BL	× -0\	-01	C X
Cert	Cd	BL C			Col
0	Hg	BL		Co	Or cert
	Cr(Cr ⁶⁺)	BL	*	D. Cer	
A30	PBBs	BL	, C	Pass	, ,
A30	PBDEs	BL	O,C ₀ ,	FdSS	
× ×	DIBP	<u> </u>	Ŋ.D.		C .x <
Co,	DBP	O, Co,	N.D.	-0 ¹	Č _{©,} ×
V CON	BBP	⊘	N.D.	J. C.	Or Call
	DEHP	N	N.D.	, Co., ×	OV' - er
	Pb O	BL		Or Col	
\Diamond	Cd	BL		OV	
3	Hg	BL	O Col		
X	Cr(Cr ⁶⁺)	BL	× -0×	- O'X	CO X
Λ31	PBBs	Q ^V Ge		Page	
A31	PBDEs		V	Pass	Or con
	DIBP		, the second second	D. Co.	
	DBP O	-eit	, C	Or cert	V
× 0	BBP	- 	DCo,		- 6/4 Or
×	DEHP	, C <u></u> -	⊘ .e [€]		




Sample photo:





Tel: 400-688-3552 Web:www.dl-cert.com Email: service@dl-cert.com

*** ** END OF REPORT ****

address:

Page 13 of 13